Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 662: 124504, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053676

ABSTRACT

Pulmonary delivery of antibiotics is an effective strategy in treating bacterial lung infection for cystic fibrosis patients, by achieving high local drug concentrations and reducing overall systemic exposure compared to systemic administration. However, the inherent anatomical lung defense mechanisms, formulation characteristics, and drug-device combination determine the treatment efficacy of the aerosol delivery approach. In this study, we prepared a new tobramycin (Tobi) dry powder aerosol using excipient enhanced growth (EEG) technology and evaluated the in vitro and in vivo aerosol performance. We further established a Pseudomonas aeruginosa-induced lung infection rat model using an in-house designed novel liquid aerosolizer device. Notably, novel liquid aerosolizer yields comparable lung infection profiles despite administering 3-times lower P. aeruginosa CFU per rat in comparison to the conventional intratracheal administration. Dry powder insufflator (e.g. Penn-Century DP-4) to administer small powder masses to experimental animals is no longer commercially available. To address this gap, we developed a novel rat air-jet dry powder insufflator (Rat AJ DPI) that can emit 68-70 % of the loaded mass for 2 mg and 5 mg of Tobi-EEG powder formulations, achieving a high rat lung deposition efficiency of 79 % and 86 %, respectively. Rat AJ DPI can achieve homogenous distribution of Tobi EEG powder formulations at both loaded mass (2 mg and 5 mg) over all five lung lobes in rats. We then demonstrated that Tobi EEG formulation delivered by Rat AJ DPI can significantly decrease CFU counts in both trachea and lung lobes at 2 mg (p < 0.05) and 5 mg (p < 0.001) loaded mass compared to the untreated P. aeruginosa-infected group. Tobi EEG powder formulation delivered by the novel Rat AJ DPI showed excellent efficiencies in substantially reducing the P. aeruginosa-induced lung infection in rats.

2.
J Control Release ; 373: 93-104, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38968971

ABSTRACT

The treatment landscape for opioid use disorder (OUD) faces challenges stemming from the limited efficacy of existing medications, poor adherence to prescribed regimens, and a heightened risk of fatal overdose post-treatment cessation. Therefore, there is a pressing need for innovative therapeutic strategies that enhance the effectiveness of interventions and the overall well-being of individuals with OUD. This study explored the therapeutic potential of nor-Levo-α-acetylmethadol (nor-LAAM) to treat OUD. We developed sustained release nor-LAAM-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles (MP) using a hydrophobic ion pairing (HIP) approach. The nor-LAAM-MP prepared using HIP with pamoic acid had high drug loading and exhibited minimal initial burst release and sustained release. The nor-LAAM-MP was further optimized for desirable particle size, drug loading, and release kinetics. The lead nor-LAAM-MP (F4) had a relatively high drug loading (11 wt%) and an average diameter (19 µm) and maintained a sustained drug release for 4 weeks. A single subcutaneous injection of nor-LAAM-MP (F4) provided detectable nor-LAAM levels in rabbit plasma for at least 15 days. We further evaluated the therapeutic efficacy of nor-LAAM-MP (F4) in a well-established fentanyl-addiction rat model, and revealed a marked reduction in fentanyl choice and withdrawal symptoms in fentanyl-dependent rats. These findings provide insights into further developing long-acting nor-LAAM-MP for treating OUD. It has the potential to offer a new effective medication to the existing sparse armamentarium of products available to treat OUD.

3.
Exp Eye Res ; 243: 109902, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641196

ABSTRACT

Nitrogen mustard (NM) is a potent vesicating chemical warfare agent that is primarily absorbed through skin, inhalation, or ocular surface. Ocular exposure of NM can cause acute to chronic keratopathy which can eventually lead to blindness. There is a current lack of effective countermeasures against ocular exposure of NM despite their imperative need. Herein, we aim to explore the sustained effect of Dexamethasone sodium phosphate (DSP)-loaded polymeric nanoparticles (PLGA-DSP-NP) following a single subconjunctival injection in the management and prevention of corneal injury progression upon exposure to NM. DSP is an FDA approved corticosteroid with proven anti-inflammatory properties. We formulated PLGA-DSP-NP with zinc chelation ion bridging method using PLGA polymer, with particles of approximately 250 nm and a drug loading of 6.5 wt%. Under in vitro sink conditions, PLGA-DSP-NP exhibited a sustained drug release for two weeks. Notably, in NM injured cornea, a single subconjunctival (SCT) injection of PLGA-DSP-NP outperformed DSP eyedrops (0.1%), DSP solution, placebo NP, and saline, significantly mitigating corneal neovascularization, ulceration, and opacity for the two weeks study period. Through PLGA-DSP-NP injection, sustained DSP release hindered inflammatory cytokine recruitment, angiogenic factors, and endothelial cell proliferation in the cornea. This strategy presents a promising localized corticosteroid delivery system to effectively combat NM-induced corneal injury, offering insights into managing vesicant exposure.


Subject(s)
Dexamethasone , Mechlorethamine , Nanoparticles , Dexamethasone/analogs & derivatives , Animals , Mechlorethamine/toxicity , Disease Models, Animal , Corneal Injuries/prevention & control , Corneal Injuries/chemically induced , Corneal Injuries/pathology , Corneal Injuries/drug therapy , Glucocorticoids , Chemical Warfare Agents/toxicity , Mice , Burns, Chemical/prevention & control , Burns, Chemical/drug therapy , Eye Burns/chemically induced , Eye Burns/prevention & control , Rabbits , Cornea/drug effects , Cornea/pathology , Cornea/metabolism
4.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645066

ABSTRACT

The treatment landscape for opioid use disorder (OUD) faces challenges stemming from the limited efficacy of existing medications, poor adherence to prescribed regimens, and a heightened risk of fatal overdose post-treatment cessation. Therefore, there is a pressing need for innovative therapeutic strategies that enhance the effectiveness of interventions and the overall well-being of individuals with OUD. This study explored the therapeutic potential of nor-Levo-α-acetylmethadol (nor-LAAM) to treat OUD. We developed sustained release nor-LAAM-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles (MP) using a hydrophobic ion pairing (HIP) approach. The nor-LAAM-MP prepared using HIP with pamoic acid had high drug loading and exhibited minimal initial burst release and sustained release. The nor-LAAM-MP was further optimized for desirable particle size, drug loading, and release kinetics. The lead nor-LAAM-MP (F4) had a relatively high drug loading (11 wt.%) and an average diameter (19 µm) and maintained a sustained drug release for 4 weeks. A single subcutaneous injection of nor-LAAM-MP (F4) provided detectable nor-LAAM levels in rabbit plasma for at least 15 days. We further evaluated the therapeutic efficacy of nor-LAAM-MP (F4) in a well-established fentanyl-addiction rat model, and revealed a marked reduction in fentanyl choice and withdrawal symptoms in fentanyl-dependent rats. These findings provide insights into further developing long-acting nor-LAAM-MP for treating OUD. It has the potential to offer a new effective medication to the existing sparse armamentarium of products available to treat OUD.

5.
Food Sci Nutr ; 12(1): 48-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38268871

ABSTRACT

Vitamins are crucial for sustaining life because they play an essential role in numerous physiological processes. Vitamin deficiencies can lead to a wide range of severe health issues. In this context, there is a need to administer vitamin supplements through appropriate routes, such as the oral route, to ensure effective treatment. Therefore, understanding the pharmacokinetics of vitamins provides critical insights into absorption, distribution, and metabolism, all of which are essential for achieving the desired pharmacological response. In this review paper, we present information on vitamin deficiencies and emphasize the significance of understanding vitamin pharmacokinetics for improved clinical research. The pharmacokinetics of several vitamins face various challenges, and thus, this work briefly outlines the current issues and their potential solutions. We also discuss the feasibility of enhanced nanocarrier-based pharmaceutical formulations for delivering vitamins. Recent studies have shown a preference for nanoformulations, which can address major limitations such as stability, solubility, absorption, and toxicity. Ultimately, the pharmacokinetics of pharmaceutical dosage forms containing vitamins can impede the treatment of diseases and disorders related to vitamin deficiency.

6.
Mol Pharm ; 20(4): 2207-2216, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36938947

ABSTRACT

Pulmonary deposition of lung-targeted therapeutic aerosols can achieve direct drug delivery to the site of action, thereby enhancing the efficacy and reducing systemic exposure. In this study, we investigated the in vitro and in vivo aerosol performance of the novel small animal air-jet dry powder insufflator (Rat AJ DPI) using spray-dried albuterol excipient-enhanced-growth (EEG) powder as a model formulation. The in vitro aerosolization performance of the optimized albuterol EEG powder was first assessed using the Rat AJ DPI. The performance of Rat AJ DPI to deliver albuterol EEG aerosol to rat lungs was then compared to that of the Penn-Century Insufflator. Albuterol EEG powders dispersed using the Rat AJ DPI demonstrated narrow unimodal aerosol size distribution profiles, which were independent of the loaded powder dose (1, 2, and 5 mg). In addition, the span value for Rat AJ DPI (5 mg powder mass) was 1.32, which was 4.2-fold lower than that for Penn-Century insufflator (5 mg powder mass). At a higher loaded mass of 5 mg, the Rat AJ DPI delivered significantly larger doses to rat lungs compared with the Penn-Century DPI. The Rat AJ DPI with hand actuation delivered approximately 85% of the total emitted dose (2 and 5 mg loadings), which was comparatively higher than that for Penn-Century DPI (approximately 75%). In addition, percentage deposition in each of the lung lobes for the Rat AJ DPI was observed to be independent of the administration dose (2 and 5 mg loadings) with coefficients of variation below 12%, except in the right middle lobe. Automatic actuation of a 5 mg powder mass using the Rat AJ DPI demonstrated a similar delivered dose compared to manual actuation of the same dose, with 82% of the total emitted dose reaching the lung lobes. High-efficiency delivery of the aerosol to the lobar lung region and low sensitivity of the interlobar delivery efficiency to the loaded dose highlight the suitability of the new air-jet DPI for administering therapeutic pharmaceutical aerosols to small test animals.


Subject(s)
Albuterol , Dry Powder Inhalers , Animals , Rats , Powders , Aerosols , Administration, Inhalation , Excipients , Particle Size , Lung
7.
ACS Macro Lett ; 12(4): 446-453, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36951898

ABSTRACT

Low mucus penetration ability and cellular uptake seriously limit the effectiveness of local vaginal drug administration because of the rapid foreign particulate and pathogen removal property of the mucus layer. Our previous work proved that nanoparticles with a highly dense polyethylene glycol (PEG) coating can penetrate mucus rapidly (mucus-penetrating nanoparticles, MPPs) and improve drug distribution and retention at mucosal surfaces. However, the "stealth-effect" of the PEG coating also restricts cellular uptake of MPPs. In this work, we designed pH-responsive mucus-penetrating nanoparticles (pMPPs) with hydrazone bonds as the linker to conjugate a dense PEG surface coating, which enabled the pMPPs to rapidly penetrate through the mucus layer. More importantly, the acidic environment of the vaginal mucus induces slow shedding of the PEG layer, leading to a positive charge exposure to facilitate cellular uptake. Overall, pMPPs demonstrate potential as an effective delivery platform for the prophylactic and therapeutic treatment of female reproductive diseases.


Subject(s)
Mucus , Nanoparticles , Humans , Female , Mucus/chemistry , Vagina/metabolism , Biological Transport , Nanoparticles/therapeutic use , Polyethylene Glycols/pharmacology , Hydrogen-Ion Concentration
8.
Int J Pharm ; 634: 122661, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36736964

ABSTRACT

Airway mucus is a complex viscoelastic gel that provides a defensive physical barrier and shields the airway epithelium by trapping inhaled foreign pathogens and facilitating their removal via mucociliary clearance (MCC). In patients with respiratory diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), non-CF bronchiectasis, and asthma, an increase in crosslinking and physical entanglement of mucin polymers as well as mucus dehydration often alters and typically reduces mucus mesh network pore size, which reduces neutrophil migration, decreases pathogen capture, sustains bacterial infection, and accelerates lung function decline. Conventional aerosol particles containing hydrophobic drugs are rapidly captured and removed by MCC. Therefore, it is critical to design aerosol delivery systems with the appropriate size and surface chemistry that can improve drug retention and absorption with the goal of increased efficacy. Biodegradable muco-adhesive particles (MAPs) and muco-penetrating particles (MPPs) have been engineered to achieve effective pulmonary delivery and extend drug residence time in the lungs. MAPs can be used to target mucus as they get trapped in airway mucus by steric obstruction and/or adhesion. MPPs avoid muco-adhesion and are designed to have a particle size smaller than the mucus network, enhancing lung retention of particles as well as transport to the respiratory epithelial layer and drug absorption. In this review, we aim to provide insight into the composition of airway mucus, rheological characteristics of airway mucus in healthy and diseased subjects, the most recent techniques to study the flow dynamics and particle diffusion in airway mucus (in particular, multiple particle tracking, MPT), and the advancements in engineering MPPs that have contributed to improved airway mucus penetration, lung distribution, and retention.


Subject(s)
Asthma , Cystic Fibrosis , Pulmonary Disease, Chronic Obstructive , Humans , Lung , Mucus
9.
Int J Pharm ; 621: 121790, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35504432

ABSTRACT

Biomimetic nanotechnology could serve as an advancement in the domain of drug delivery and diagnosis with the application of natural cell membrane or synthetically-derived membrane nanoparticles (NPs). These biomimetic NPs endow significant therapeutic and diagnostic efficacy by their unique properties, such as immune invasion and better targeting ability. Additionally, these NPs have a unique ability to retain the inherent properties of cell membrane and membrane's intrinsic functionalities, which helps them to exhibit superior therapeutic effects. In this review, we describe how these membrane-clocked NPs endow superior therapeutic effects by immune invasion; along with this, the development of membrane-coated NPs and their method of preparation and characterization has been clearly described in the manuscript. Moreover, Various developed membrane-coated NPs such as red blood cell membrane-coated NPs, white blood cells membrane-coated NPs, platelet membrane coated, cancer cell membrane coated, bacterial membrane vesicles and, mesenchymal stem cells membrane-coated NPs have been established in this manuscript. At last, the discussion on the role of membrane-coated NPs as theranostics, and notably, the literature that demonstrates the shreds of evidences of these NPs in targeting and neutralizing the SARS-CoV-2 virus have also been incorporated.


Subject(s)
COVID-19 Drug Treatment , Nanoparticles , Cell Membrane , Drug Delivery Systems , Humans , SARS-CoV-2
10.
Biomaterials ; 281: 121334, 2022 02.
Article in English | MEDLINE | ID: mdl-34974206

ABSTRACT

In this study, we investigated the immune-modulating effects of a novel metronomic chemotherapy (MCT) featuring combined oral oxaliplatin (OXA) and pemetrexed (PMX) for colon cancer. OXA and PMX were ionically complexed with lysine derivative of deoxycholic acid (DCK), and incorporated into nanoemulsions or colloidal dispersions, yielding OXA/DCK-NE and PMX/DCK-OP, respectively, to improve their oral bioavailabilities. MCT was not associated with significant lymphotoxicity whereas the maximum tolerated dose (MTD) afforded systemic immunosuppression. MCT was associated with more immunogenic cell death and tumor cell MHC-class I expression than was MTD. MCT improved the tumor antigen presentation of dendritic cells and increased the number of functional T cells in the tumor. MCT also helped to enhance antigen-specific memory responses both locally and systemically. By combining MCT with anti-programmed cell death protein-1 (αPD-1) therapy, the tumor volume was suppressed by 97.85 ± 84.88% compared to the control, resulting in a 95% complete response rate. Upon re-challenge, all tumor-free mice rejected secondary tumors, indicating the induction of a tumor specific memory response. Thus, MCT using an OXA and PMX combination, together with αPD-1, successfully treated colon cancer by activating both innate and adaptive immune cells and elicited tumor-specific long-term immune memory while avoiding toxicity caused by MTD treatment.


Subject(s)
Colonic Neoplasms , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Immunotherapy , Mice , Oxaliplatin/therapeutic use
12.
Drug Deliv ; 28(1): 2313-2328, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34730056

ABSTRACT

In this study, we developed oral pemetrexed (PMX) for metronomic dosing to enhance antitumor immunity. PMX was electrostatically complexed with positively charged lysine-linked deoxycholic acid (DL) as an intestinal permeation enhancer, forming PMX/DL, to enhance its intestinal permeability. PMX/DL was also incorporated into a colloidal dispersion (CD) comprised of the block copolymer of poly(ethylene oxide) and poly(propylene oxide), and caprylocaproyl macrogol-8 glycerides (PMX/DL-CD). CD-containing PMX/DL complex in a 1:1 molar ratio [PMX/DL(1:1)-CD] showed 4.66- and 7.19-fold greater permeability than free PMX through the Caco-2 cell monolayer and rat intestine, respectively. This resulted in a 282% improvement in oral bioavailability in rats. In addition, low-dose metronomic PMX led to more immunogenic cell death in CT26.CL25 cells compared to high PMX concentrations at the maximum tolerated dose. In CT26.CL25 tumor-bearing mice, oral metronomic PMX/DL-CD elicited greater antitumor immunity not only by enhancing the number of tumor-infiltrating lymphocytes but also by suppressing T cell functions. Oral PMX/DL-CD substantially increased programmed cell death protein ligand-1 (PD-L1) expression on tumor cells compared to the control and PMX-IV groups. This increased antitumor efficacy in combination with anti-programmed cell death protein-1 (aPD-1) antibody in terms of tumor rejection and immunological memory compared to the combination of PMX-IV and aPD-1. These results suggest that oral metronomic scheduling of PMX/DL-CD in combination with immunotherapy has synergistic antitumor effects.


Subject(s)
Administration, Metronomic , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Neoplasms/pathology , Pemetrexed/administration & dosage , Pemetrexed/pharmacology , Administration, Oral , Animals , B7-H1 Antigen/drug effects , Cell Line, Tumor , Chemistry, Pharmaceutical , Deoxycholic Acid/chemistry , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Female , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays
13.
Int J Anal Chem ; 2021: 9749474, 2021.
Article in English | MEDLINE | ID: mdl-34712328

ABSTRACT

Serratiopeptidase (SRP) is a proteolytic enzyme that emerged as one of the most potent anti-inflammatory and analgesic drugs. The purpose of the present study was to formulate and evaluate enteric-coated tablets for SRP and investigate their stability using a simple and validated analytical method by ultraviolet (UV) spectroscopy. The colloidal silicon dioxide (2.50%), sodium starch glycolate (3.44%), and crospovidone (2.50%) were used as appropriate excipients for the development of core part of tablets. To protect the prepared tablets from acidic environment in the stomach, white shellac, castor oil, HPMC phthalate 40, and ethyl cellulose were used. The seal coating and enteric coating attained were 2.75% and 6.74%, respectively. SRP was found to be linear at 265 nm in the concentration range of 25-150 µg/mL. The results revealed that our developed method was linear (R 2 = 0.999), precise (RSD % = 0.133), and accurate (% recovery = 99.96-103.34). The formulated SRP tablets were found to be stable under accelerated conditions as well as under room temperature for 6 months (assay %: >97.5%). The in vitro drug release study demonstrated that enteric-coated tablets were able to restrict SRP release in both acidic environments: 0.1 N HCl and simulated gastric fluid (pH 1.2). Moreover, at 60 minutes, the formulated SRP tablets revealed 13.0% and 8.98% higher drug release in phosphate buffer (pH 6.8) and simulated intestinal fluid (pH 6.8), respectively, compared to the marketed tablet formulation. This study concludes that enteric-coated tablets of SRP with higher drug release in the intestine can be prepared and examined for their stability using validated analytical technique of UV spectroscopy.

14.
Pharmaceutics ; 13(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925457

ABSTRACT

In this study, a stable and highly skin-permeable topical delivery system for itraconazole (ITZ) was designed to provide effective treatment against superficial mycosis. Herein, ITZ was incorporated into a solution composed of ethanol, benzyl alcohol, hydrochloric acid, Transcutol P, and cyclomethicone as a delivery vehicle, solubilizer, protonating agent, permeation enhancer, and spreading agent, respectively. At 72 h, the optimal topical ITZ formulation (ITZ-TF#11) exhibited 135% enhanced skin permeability, which led to increases in drug deposition in the stratum corneum, epidermis, and dermis of 479%, 739%, and 2024%, respectively, compared with the deposition of 1% ITZ in ethanol (control). Moreover, on day 7, ITZ-TF#11 demonstrated 2.09- and 2.30-fold enhanced nail flux and drug deposition, compared with the control. At a dose of 40 mg/kg/day, ITZ-TF#11 showed 323% greater lesion recovery, a 165% lower mean erythema severity score, and a 37% lower mean logarithm of viable fungal cells in skin in the treated area, compared with mice that received oral ITZ at the same dose. Overall, the findings imply that ITZ-TF#11 is a superior alternative to oral ITZ for treatment of superficial mycosis.

15.
Int J Nanomedicine ; 15: 7719-7743, 2020.
Article in English | MEDLINE | ID: mdl-33116497

ABSTRACT

OBJECTIVE: The anticancer efficacy of orally administered chemotherapeutics is often constrained by low intestinal membrane permeability and oral bioavailability. In this context, we designed a solid oral formulation of oxaliplatin (OP), a third-generation cisplatin analog, to improve oral bioavailability and investigate its application in metronomic chemotherapy. METHODS: An ion-pairing complex of OP with a permeation enhancer, N α-deoxycholyl-l-lysyl-methylester (DLM), was successfully prepared and then mixed with dispersing agents (including poloxamer 188 and Labrasol) to form the solid, amorphous oral formulation OP/DLM (OP/DLM-SF; hereafter, ODSF). RESULTS: The optimized powder formulation was sized in the nanoscale range (133±1.47 nm). The effective permeability of OP increased by 12.4-fold after ionic complex formation with DLM and was further increased by 24.0-fold after incorporation into ODSF. ODSF exhibited respective increases of 128% and 1010% in apparent permeability across a Caco-2 monolayer, compared to OP/DLM and OP. Furthermore, inhibition of bile acid transporters by actinomycin D and caveola-mediated uptake by brefeldin in Caco-2 cell monolayers reduced the apparent permeability values of ODSF by 58.4% and 51.1%, respectively, suggesting predominant roles for bile acid transporters and caveola-mediated transport in intestinal absorption of ODSF. In addition, macropinocytosis and paracellular and transcellular passive transport significantly influenced the intestinal permeation of ODSF. The oral bioavailabilities of ODSF in rats and monkeys were 68.2% and 277% higher, respectively, than the oral bioavailability of free OP. In vivo analyses of anticancer efficacy in CT26 and HCT116 cell-bearing mice treated with ODSF demonstrated significant suppression of tumor growth, with respective maximal tumor volume reductions of 7.77-fold and 4.07-fold, compared to controls. CONCLUSION: ODSF exhibits therapeutic potential, constituting an effective delivery system that increases oral bioavailability, with applications to metronomic chemotherapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Colonic Neoplasms/drug therapy , Drug Carriers/administration & dosage , Oxaliplatin/administration & dosage , Oxaliplatin/pharmacokinetics , Administration, Metronomic , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Biological Availability , Caco-2 Cells , Cell Membrane Permeability/drug effects , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Female , Glycerides/chemistry , Humans , Intestinal Absorption/drug effects , Lysine/analogs & derivatives , Lysine/chemistry , Macaca fascicularis , Male , Mice, Inbred BALB C , Poloxamer/chemistry , Rats, Sprague-Dawley
16.
Drug Deliv ; 27(1): 1501-1513, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33107339

ABSTRACT

In this study, a system for oral delivery of etoposide (ETP) was designed to avoid the problems associated with low and variable bioavailability of a commercially available ETP emulsion comprised of polyethylene glycol, glycerol, and citric acid anhydrous. ETP was complexed with low-molecular-weight methylcellulose (ETP/LMC) and loaded into a water-in-oil-in-water multiple nanoemulsion to formulate an ETP/LMC-nanoemulsion (ELNE). To further enhance the oral bioavailability, an ionic complex formed by anionic lipid 1,2-didecanoyl-sn-glycero-3-phosphate (sodium salt) and cationic N α-deoxycholyl-l-lysyl-methylester was incorporated into ELNE, yielding ELNE#7. As expected, ELNE#7 showed 4.07- and 2.25-fold increases in artificial membrane and Caco-2/HT29-MTX-E12 permeability (Papp ), respectively, resulting in 224% greater oral bioavailability compared with the commercially available ETP emulsion. In contrast, inhibition of clathrin- and caveola-mediated endocytosis, macropinocytosis, and bile acid transporters by chlorpromazine, genistein, amiloride, and actinomycin D in Caco-2/HT-29-MTX-E12 monolayers reduced the Papp by 45.0%, 20.5%, 28.8%, and 31.1%, respectively. These findings suggest that these routes play important roles in enhancing the oral absorption of ELNE#7. In addition, our mechanistic study suggested that P-glycoprotein did not have an inhibitory effect on the permeation of ELNE#7. Notably, ELNE#7 showed significantly enhanced toxicity in LLC and A549 cells compared with ETP-E. These observations support the improved oral absorption of ETP in ELNE#7, suggesting that it is a better alternative than ETP emulsion.


Subject(s)
Deoxycholic Acid/chemistry , Emulsions/chemistry , Etoposide/chemistry , Lipids/chemistry , A549 Cells , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Cell Line, Tumor , Citric Acid/chemistry , Deoxycholic Acid/metabolism , Emulsions/metabolism , Glycerol/chemistry , HT29 Cells , Humans , Intestinal Absorption/drug effects , Permeability/drug effects , Polyethylene Glycols/chemistry , Rats , Rats, Sprague-Dawley
17.
J Control Release ; 328: 368-394, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32890552

ABSTRACT

In this study, a system for oral delivery of docetaxel (DTX) was prepared to enhance the oral absorption and anticancer efficacy of DTX via metronomic chemotherapy. DTX was complexed with low-molecular-weight methylcellulose (LMC) and loaded into a nanoemulsion (NE), yielding DTX/LMC-NE (DLNE). To further enhance the oral bioavailability, d-alpha-tocopherol polyethylene glycol succinate and sodium deoxycholate (DOCA) complexed with cationic lipid 1,2-dioleyl-3-trimethylammonium propane (DOTAP) (DOCA-DOTAP [DA-TAP] complex) was incorporated into DLNE, yielding the formulation DLNE#10. As expected, DLNE#10 showed 11.3- and 5.81-fold increases in artificial membrane (Pe) and Caco-2 permeability (Papp), respectively, resulting in 249% greater oral bioavailability, compared to free DTX. In contrast, inhibition of clathrin- and caveola-mediated endocytosis, macropinocytosis, and bile acid transporters by chlorpromazine, genistein, amiloride, and actinomycin D in the Caco-2 monolayer reduced the Papp by 55.3%, 44.2%, 35.9%, and 36.5%, respectively; these findings suggest that these routes play important roles in enhancing the oral absorption of DLNE#10. In addition, our mechanistic study suggested that P-glycoprotein (P-gp) did not have an inhibitory effect on the permeation of DLNE#10. Notably, the half-maximal inhibitory concentrations (IC50) of DLNE#10 were 43.5% and 16.8% greater than those of Taxotere® in MCF-7 and 4T1 cells, respectively. Finally, the tumor inhibitory rates in 4T1 cell tumor-bearing mice after oral metronomic dosing of DLNE#10 (20 mg/kg DTX) were 5.02- and 1.65-fold greater than the rates in the untreated control group and intravenously injected DTX (10 mg/kg) group, respectively. These observations support the improved oral absorption and enhanced chemotherapeutic efficacy of DTX in DLNE#10 via metronomic chemotherapy, suggesting that it is a better alternative than intravenous Taxotere®.


Subject(s)
Antineoplastic Agents , Nanoparticles , Animals , Bile Acids and Salts , Caco-2 Cells , Cell Line, Tumor , Docetaxel , Humans , Lipids , Mice
18.
J Nanosci Nanotechnol ; 20(9): 5515-5519, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331128

ABSTRACT

Hearing loss is one of the major complications of diabetes mellitus and significantly lowers the quality of life of diabetic patients. In studies using diabetic animal models hearing loss have been frequently associated with damages to cochlear afferent fibers. Recent studies suggested that cochlear afferent neurons are composed of heterogeneous populations and a subgroup of neurons equipped with low level of calretinin might be more vulnerable to various noxious stimuli such as noise and neurotoxins. Here, we tested if cochlear afferent neurons deficient in the Ca2+-buffering protein calretinin are more vulnerable to hyperglycemic insults. Streptozotocin-induced (50 mg/kg, i.p.) hyperglycemic mice (>250 mg/dl) were tested. The expression patterns of calretinin in peripheral processes and the cell bodies of cochlear afferent nerve fibers were examined using immunohistochemistry and confocal microscopy. The proportion of calretinin-poor cochlear afferent fibers was much lower in hyperglycemic mice compared to the normoglycemic control group. (30.0 vs. 55.5% in the peripheral process; 15.7 vs. 24.4 % in spiral ganglion neuron). The results suggest that calretinin-poor cochlear nerve fibers may be selectively lost after the hyperglycemic insults. The finding also supports a calretinin's neuroprotective role against diabetic neuropathy in cochlear afferent neurons.


Subject(s)
Calbindin 2 , Cochlea/drug effects , Hyperglycemia/pathology , Nerve Fibers , Quality of Life , Animals , Hyperglycemia/chemically induced , Mice , Mice, Obese , Neurons, Afferent , Streptozocin
19.
J Control Release ; 322: 13-30, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32169534

ABSTRACT

In this study, a system for oral delivery of oxaliplatin (OXA) was prepared for metronomic chemotherapy to enhance antitumor efficacy and modulate tumor immunity. OXA was complexed with Nα-deoxycholyl-l-lysyl-methylester (DCK) (OXA/DCK) and formulated as a nanoemulsion (OXA/DCK-NE). OXA/DCK-NE showed 3.35-fold increased permeability across a Caco-2 cell monolayer, resulting in 1.73-fold higher oral bioavailability than free OXA. In addition, treatment of the B16F10.OVA cell line with OXA/DCK-NE resulted in successful upregulation of immunogenic cell death (ICD) markers both in vitro and in vivo. In a B16F10.OVA tumor-bearing mouse model, treatment with OXA/DCK-NE substantially impeded tumor growth by 63.9 ± 13.3% compared to the control group, which was also greater than the intravenous (IV) OXA group. Moreover, treatment with a combination of oral OXA/DCK-NE and anti-programmed cell death protein-1 (αPD-1) antibody resulted in 78.3 ± 9.67% greater inhibition compared to controls. More important, OXA/DCK-NE alone had immunomodulatory effects, such as enhancement of tumor antigen uptake, activation of dendritic cells in tumor-draining lymph nodes, and augmentation of both the population and function of immune effector cells in tumor tissue as well as in the spleen; no such effects were seen in the OXA IV group. These observations provide a rationale for combining oral metronomic OXA with immunotherapy to elicit synergistic antitumor effects.


Subject(s)
Oxaliplatin , Administration, Oral , Animals , Biological Availability , Biological Transport , Caco-2 Cells , Cell Line, Tumor , Humans , Mice
20.
Drug Deliv ; 26(1): 1167-1177, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31738083

ABSTRACT

Onychomycosis is a progressive fungal infection of the nails that involves the deeper nail layer and nail bed. It is important to maintain sufficient drug concentration in the diseased tissues after topical application. In this study, a stable topical delivery system for efinaconazole (EFN) was designed to enhance absorption potential through the skin and nail plate by incorporating ethanol, diethylene glycol monoethyl ether (Transcutol P) and isopropyl myristate, and cyclomethicone into the topical solution as a delivery vehicle, permeation enhancers, and a wetting agent, respectively. In addition, the stability of EFN in the formulation was significantly improved by adding butylated hydroxytoluene, diethylenetriamine pentaacetic acid, and citric acid as an antioxidant, chelating agent, and pH-adjusting agent, respectively, without discoloration. The optimum EFN formulation (EFN-K) showed 1.46-fold greater human skin permeation than that of the reference control (commercial 10% EFN topical solution). Furthermore, after a 24-hour incubation, the amount of infiltrated EFN from EFN-K in the human nail plate was 4.11-fold greater than that of the reference control, resulting in an 89.7% increase in nail flux at 7 days after treatment. EFN-K significantly accelerated structural recovery of the keratin layer in a Trichophyton mentagrophytes-infected guinea pig onychomycosis model, decreasing the mean viable fungal cell count by 54.3% compared to the vehicle-treated group after once-daily treatment for 4 weeks. Thus, the accelerated skin and nail penetration effect of EFN-K is expected to achieve good patient compliance, and improve the complete cure rate of onychomycosis.


Subject(s)
Antifungal Agents/therapeutic use , Nails/drug effects , Onychomycosis/drug therapy , Skin/drug effects , Tinea/drug therapy , Triazoles/therapeutic use , Administration, Topical , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Disease Models, Animal , Guinea Pigs , Humans , In Vitro Techniques , Male , Membranes, Artificial , Nails/metabolism , Onychomycosis/metabolism , Onychomycosis/microbiology , Permeability , Skin/metabolism , Skin Absorption/drug effects , Tinea/metabolism , Triazoles/administration & dosage , Triazoles/pharmacokinetics , Trichophyton/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL