Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 838: 146698, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35772651

ABSTRACT

PURPOSE: The pandemic diffusion of Coronavirus Disease 2019 (COVID-19) has highlighted significant gender-related differences in disease severity. Despite several hypotheses being proposed, how the genetic background of COVID-19 patients might impact clinical outcomes remains largely unknown. METHODS: We collected blood samples from 192 COVID-19 patients (115 men, 77 women, mean age 67 ± 19 years) admitted between March and June 2020 at two different hospital centers in Italy, and determined the allelic distribution of nine Single Nucleotide Polymorphisms (SNPs), located at the 3'Regulatory Region (3'RR)-1 in the immunoglobulin (Ig) heavy chain locus, including *1 and *2 alleles of polymorphic hs1.2 enhancer region. RESULTS: In COVID-19 patients, the genotyped SNPs exhibited strong Linkage Disequilibrium and produced 7 specific haplotypes, associated to different degrees of disease severity, including the occurrence of pneumonia. Additionally, the allele *2, which comprises a DNA binding site for the Estrogen receptor alpha (ERα) in the polymorphic enhancer hs1.2 of 3'RR-1, was significantly enriched in women with a less severe disease. CONCLUSIONS: These findings document genetic variants associated to individual clinical severity of COVID-19 disease. Most specifically, a novel genetic protective factor was identified that might explain the sex-related differences in immune response to Sars-COV-2 infection in humans.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Alleles , COVID-19/genetics , Enhancer Elements, Genetic , Female , Humans , Immunoglobulin Heavy Chains/genetics , Male , Middle Aged , SARS-CoV-2/genetics
2.
Mol Neurobiol ; 59(8): 4825-4838, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35639255

ABSTRACT

The primary cilium is a non-motile sensory organelle that extends from the surface of most vertebrate cells and transduces signals regulating proliferation, differentiation, and migration. Primary cilia dysfunctions have been observed in cancer and in a group of heterogeneous disorders called ciliopathies, characterized by renal and liver cysts, skeleton and limb abnormalities, retinal degeneration, intellectual disability, ataxia, and heart disease and, recently, in autism spectrum disorder, schizophrenia, and epilepsy. The potassium voltage-gated channel subfamily H member 1 (KCNH1) gene encodes a member of the EAG (ether-à-go-go) family, which controls potassium flux regulating resting membrane potential in both excitable and non-excitable cells and is involved in intracellular signaling, cell proliferation, and tumorigenesis. KCNH1 missense variants have been associated with syndromic neurodevelopmental disorders, including Zimmermann-Laband syndrome 1 (ZLS1, MIM #135500), Temple-Baraitser syndrome (TMBTS, MIM #611816), and, recently, with milder phenotypes as epilepsy. In this work, we provide evidence that KCNH1 localizes at the base of the cilium in pre-ciliary vesicles and ciliary pocket of human dermal fibroblasts and retinal pigment epithelial (hTERT RPE1) cells and that the pathogenic missense variants (L352V and R330Q; NP_002229.1) perturb cilia morphology, assembly/disassembly, and Sonic Hedgehog signaling, disclosing a multifaceted role of the protein. The study of KCNH1 localization, its functions related to primary cilia, and the alterations introduced by mutations in ciliogenesis, cell cycle coordination, cilium morphology, and cilia signaling pathways could help elucidate the molecular mechanisms underlying neurological phenotypes and neurodevelopmental disorders not considered as classical ciliopathies but for which a significant role of primary cilia is emerging.


Subject(s)
Autism Spectrum Disorder , Ciliopathies , Epilepsy , Abnormalities, Multiple , Ciliopathies/genetics , Ciliopathies/pathology , Craniofacial Abnormalities , Epilepsy/genetics , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Fibromatosis, Gingival , Hallux/abnormalities , Hand Deformities, Congenital , Hedgehog Proteins/metabolism , Humans , Intellectual Disability , Nails, Malformed , Potassium/metabolism , Thumb/abnormalities
3.
Hum Mutat ; 43(9): 1201-1215, 2022 09.
Article in English | MEDLINE | ID: mdl-35583122

ABSTRACT

The recent identification of noncoding variants with pathogenic effects suggests that these variations could underlie a significant number of undiagnosed cases. Several computational methods have been developed to predict the functional impact of noncoding variants, but they exhibit only partial concordance and are not integrated with functional annotation resources, making the interpretation of these variants still challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine regulators of gene expression and play crucial functions in several biological processes, such as cell proliferation and differentiation. An increasing number of studies demonstrate a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian diseases and complex traits. To predict the functional effect of miRNA SNVs, we implemented a new meta-predictor, MiRLog, and we integrated it into a comprehensive database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs, providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR were used to explore the genetic variability of miRNAs in 15,708 human genomes included in the gnomAD project, finding several ultra-rare SNVs with a potentially deleterious effect on miRNA biogenesis and function representing putative contributors to human phenotypes.


Subject(s)
MicroRNAs , Base Sequence , Computational Biology/methods , Genome, Human/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Nucleotides , Polymorphism, Single Nucleotide
4.
Bone ; 144: 115803, 2021 03.
Article in English | MEDLINE | ID: mdl-33333243

ABSTRACT

INTRODUCTION: Brachydactyly is a bone development abnormality presenting with variable phenotypes and different transmission patterns. Mutations in GDF5 (Growth and Differentiation Factor 5, MIM *601146) account for a significant amount of cases. Here, we report on a three-generation family, where the proband and the grandfather have an isolated brachydactyly with features of both type A1 (MIM #112500) and type C (MIM #113100), while the mother shows only subtle hand phenotype signs. MATERIALS AND METHODS: Whole Exome Sequencing (WES) was performed on the two affected individuals. An in-depth analysis of GDF5 genotype-phenotype correlations was performed through literature reviewing and retrieving information from several databases to elucidate GDF5-related molecular pathogenic mechanisms. RESULTS: WES analysis disclosed a pathogenic variant in GDF5 (NM_000557.5:c.157dup; NP_000548.2:p.Leu53Profs*41; rs778834209), segregating with the phenotype. The frameshift variant was previously associated with Brachydactyly type C (MIM #113100), in heterozygosity, and with the severe Grebe type chondrodysplasia (MIM #200700), in homozygosity. In-depth analysis of literature and databases allowed to retrieve GDF5 mutations and correlations to phenotypes. We disclosed the association of 49 GDF5 pathogenic mutations with eight phenotypes, with both autosomal dominant and recessive transmission patterns. Clinical presentations ranged from severe defects of limb morphogenesis to mild redundant ossification. We suggest that such clinical gradient can be linked to a continuum of GDF5-activity variation, with loss of GDF5 activity underlying bone development defects, and gain of function causing disorders with excessive bone formation. CONCLUSIONS: Our analysis of GDF5 pathogenicity mechanisms furtherly supports that mutation and zygosity backgrounds resulting in the same level of GDF5 activity may lead to similar phenotypes. This information can aid in interpreting the potential pathogenic effect of new variants and in supporting an appropriate genetic counseling.


Subject(s)
Brachydactyly , Musculoskeletal Abnormalities , Osteochondrodysplasias , Brachydactyly/genetics , Genetic Association Studies , Growth Differentiation Factor 5/genetics , Humans , Mutation/genetics , Pedigree , Phenotype
5.
Nucleic Acids Res ; 49(D1): D1282-D1288, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33300029

ABSTRACT

Numerous lines of evidence have shown that the interaction between the nuclear and mitochondrial genomes ensures the efficient functioning of the OXPHOS complexes, with substantial implications in bioenergetics, adaptation, and disease. Their interaction is a fascinating and complex trait of the eukaryotic cell that MitImpact explores with its third major release. MitImpact expands its collection of genomic, clinical, and functional annotations of all non-synonymous substitutions of the human mitochondrial genome with new information on putative Compensated Pathogenic Deviations and co-varying amino acid sites of the Respiratory Chain subunits. It further provides evidence of energetic and structural residue compensation by techniques of molecular dynamics simulation. MitImpact is freely accessible at http://mitimpact.css-mendel.it.


Subject(s)
Electron Transport Chain Complex Proteins/chemistry , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/chemistry , Protein Subunits/chemistry , Software , Amino Acid Substitution , Animals , Cetacea , Electron Transport , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Gene Ontology , Humans , Internet , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Molecular , Molecular Sequence Annotation , Mutation , Oxidative Phosphorylation , Primates , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Protein Subunits/genetics , Protein Subunits/metabolism , Rodentia
6.
Comput Struct Biotechnol J ; 18: 2033-2042, 2020.
Article in English | MEDLINE | ID: mdl-32802275

ABSTRACT

Mutations in genes encoding for histone methylation proteins are associated with several developmental disorders. Among them, KDM6A is the disease causative gene of type 2 Kabuki Syndrome, a rare multisystem disease. While nonsense mutations and short insertions/deletions are known to trigger pathogenic mechanisms, the functional effects of missense mutations are still uncharacterized. In this study, we demonstrate that a selected set of missense mutations significantly hamper the interaction between KDM6A and the histone H3, by modifying the dynamics of the linker domain, and then causing a loss of function effect.

7.
Mol Genet Genomic Med ; 8(8): e1336, 2020 08.
Article in English | MEDLINE | ID: mdl-32519823

ABSTRACT

BACKGROUND: Corpus callosum agenesis (ACC) is one of the most frequent Central Nervous System (CNS) malformations. However, genetics underlying isolated forms is still poorly recognized. Here, we report on two female familial cases with partial ACC. The proband shows isolated partial ACC and a mild neurodevelopmental phenotype. A fetus from a previous interrupted pregnancy exhibited a complex phenotype including partial ACC and the occurrence of a de novo 17q12 microduplication, which was interpreted as probably disease-causing. METHODS: A trio-based clinical exome sequencing (CES) was performed. RESULTS: Clinical exome sequencing data analysis led to identifying a heterozygous nonsense variant (NM_139058.3:c.922G>T; NP_620689.1:p.Glu308Ter) in the aristaless related homeobox gene (ARX) in the proband, with a putative de novo occurrence, producing a hypothetical protein lacking two essential domains. Sanger analysis confirmed the wild-type status of both parents in different tissues, and disclosed the occurrence of the nonsense variant in the fetus of the interrupted pregnancy, suggesting a formerly unrecognized contribution of the ARX mutation to the fetus' phenotype and gonadal or gonadosomatic mosaicism in one of the parents. CONCLUSION: This study describes the phenotype associated with a heterozygous loss of function variant in ARX. Moreover, it highlights the importance of investigating both chromosomal and genetic contributions in cases of complex syndromic phenotypes involving CNS.


Subject(s)
Agenesis of Corpus Callosum/genetics , Chromosome Disorders/genetics , Chromosome Duplication , Genetic Testing/methods , Homeodomain Proteins/genetics , Phenotype , Transcription Factors/genetics , Agenesis of Corpus Callosum/complications , Agenesis of Corpus Callosum/pathology , Chromosome Disorders/complications , Chromosome Disorders/pathology , Chromosomes, Human, Pair 17/genetics , Codon, Nonsense , Female , Heterozygote , Humans , Infant , Loss of Function Mutation , Mosaicism , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...