Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39274033

ABSTRACT

Robust materials in medical applications are sought after and researched, especially for 3D printing in bone tissue engineering. Poly[ε-caprolactone] (PCL) is a commonly used polymer for scaffolding and other medical uses. Its strength is a drawback compared to other polymers. Herein, PCL was mixed with hydroxyapatite (HAp). Composites were developed at various concentrations (0.0-8.0 wt. %, 2.0 step), aiming to enhance the strength of PCL with a biocompatible additive in bioplotting. Initially, pellets were derived from the shredding of filaments extruded after mixing PCL and HAp at predetermined quantities for each composite. Specimens were then manufactured by bioplotting 3D printing. The samples were tested for their thermal and rheological properties and were also mechanically, morphologically, and chemically examined. The mechanical properties included tensile and flexural investigations, while morphological and chemical examinations were carried out employing scanning electron microscopy and energy dispersive spectroscopy, respectively. The structure of the manufactured specimens was analyzed using micro-computed tomography with regard to both their dimensional deviations and voids. PCL/HAp 6.0 wt. % was the composite that showed the most enhanced mechanical (14.6% strength improvement) and structural properties, proving the efficiency of HAp as a reinforcement filler in medical applications.

2.
Molecules ; 29(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39339358

ABSTRACT

Developing materials for efficient energy storage and effective electromagnetic interference (EMI) shielding is crucial in modern technology. This study explores the synthesis and characterization of carbonaceous shape-stabilized octadecane/MWCNT (multi-walled carbon nanotube) composites, utilizing activated carbon, expanded graphite or ceramic carbon foam, as shape stabilizers for phase change materials (PCMs) to enhance thermal energy storage and EMI shielding, for energy-efficient and advanced applications. The integration of octadecane, a phase change material (PCM) with carbonaceous stabilizers ensures the material's stability during phase transitions, while MWCNTs contribute to improved thermal storage properties and EMI shielding capabilities. The research aims to develop novel composites with dual functionality for thermal storage and EMI shielding, emphasizing the role of carbon matrices and their MWCNT composites. SEM and CT microtomography analyses reveal variations in MWCNT incorporation across the matrices, influenced by surface properties and porosity. Leaching tests, infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) confirm the composite's stability and high latent heat storage. The presence of nanotubes enhances the thermal properties of octadecane and ΔH values almost reached their theoretical values. EMI shielding effectiveness measurements indicate that the composites show improved electric properties in the presence of MWCNTs.

3.
Nanomaterials (Basel) ; 14(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39120390

ABSTRACT

This study aimed to investigate the potential of antimony-doped tin oxide (ATO) as a reinforcing agent for polyamide 12 (PA12) in 3D printing by examining four mixtures with varying ATO concentrations (2.0 to 8.0 wt.%, with a 2.0 wt.% interval). These mixtures were used to fabricate filaments for the manufacturing of specimens through the material extrusion method. The mechanical properties of the resulting PA12/ATO composites and PA12 pure samples were evaluated through tensile, Charpy impact, flexural, and microhardness tests. Additionally, rheology, structure, morphology, thermal properties, pore size, and consistency in the dimensions of the samples were evaluated. Thermogravimetric analysis, along with differential scanning calorimetry, scanning electron microscopy, energy-dispersive and Raman spectroscopy, and micro-computed tomography, were conducted. The results were correlated and interpreted. The greatest reinforcement was achieved with the PA12/ATO 4.0 wt.% mixture, which exhibited a 19.3% increase in tensile strength and an 18.6% increase in flexural strength compared with pure PA12 (the control samples). The Charpy impact strength and microhardness were also improved by more than 10%. These findings indicate the merit of composites with ATO in additive manufacturing, particularly in the production of components with improved mechanical performance.

4.
Polymers (Basel) ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38932052

ABSTRACT

In this study, titanium nitride (TiN) was selected as an additive to a high-density polyethylene (HDPE) matrix material, and four different nanocomposites were created with TiN loadings of 2.0-8.0 wt. % and a 2 wt. % increase step between them. The mixtures were made, followed by the fabrication of the respective filaments (through a thermomechanical extrusion process) and 3D-printed specimens (using the material extrusion (MEX) technique). The manufactured specimens were subjected to mechanical, thermal, rheological, structural, and morphological testing. Their results were compared with those obtained after conducting the same assessments on unfilled HDPE samples, which were used as the control samples. The mechanical response of the samples improved when correlated with that of the unfilled HDPE. The tensile strength improved by 24.3%, and the flexural strength improved by 26.5% (composite with 6.0 wt. % TiN content). The dimensional deviation and porosity of the samples were assessed with micro-computed tomography and indicated great results for porosity improvement, achieved with 6.0 wt. % TiN content in the composite. TiN has proven to be an effective filler for HDPE polymers, enabling the manufacture of parts with improved mechanical properties and quality.

5.
Heliyon ; 10(11): e32094, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882316

ABSTRACT

Acrylonitrile butadiene styrene (ABS) composites were prepared in filament form compatible with the material extrusion (MEX) 3D printing method, using biochar as a filler at various loadings of up to 10.0 wt %. Samples were fabricated to experimentally investigate their mechanical performance. The ABS/biochar composites were characterized using thermogravimetric analysis, differential scanning calorimetry, Raman spectroscopy, and rheological tests. The electrical properties of the composites were investigated using broadband dielectric spectroscopy. Scanning electron microscopy was utilized to analyze the morphological features of the fabricated specimens by examining their side and fracture surfaces. The results indicate that the composite with 4.0 wt % biochar content compared to pure ABS showed the highest mechanical response between the prepared composites (24.9 % and 21 % higher than the pure ABS tensile and flexural strength respectively). The composites retained their insulating behavior. These findings contribute to expanding the utilization of the material extrusion (MEX) 3D printing method while also unlocking prospects for potential applications in microelectronics, apart from mechanical reinforcement.

6.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727355

ABSTRACT

In this study, poly (ethylene terephthalate) (PETG) was combined with Antimony-doped Tin Oxide (ATO) to create five different composites (2.0-10.0 wt.% ATO). The PETG/ATO filaments were extruded and supplied to a material extrusion (MEX) 3D printer to fabricate the specimens following international standards. Various tests were conducted on thermal, rheological, mechanical, and morphological properties. The mechanical performance of the prepared nanocomposites was evaluated using flexural, tensile, microhardness, and Charpy impact tests. The dielectric and electrical properties of the prepared composites were evaluated over a broad frequency range. The dimensional accuracy and porosity of the 3D printed structure were assessed using micro-computed tomography. Other investigations include scanning electron microscopy and energy-dispersive X-ray spectroscopy, which were performed to investigate the structures and morphologies of the samples. The PETG/6.0 wt.% ATO composite presented the highest mechanical performance (21% increase over the pure polymer in tensile strength). The results show the potential of such nanocomposites when enhanced mechanical performance is required in MEX 3D printing applications, in which PETG is the most commonly used polymer.

7.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674964

ABSTRACT

Polyethylene terephthalate glycol (PETG) and silicon nitride (Si3N4) were combined to create five composite materials with Si3N4 loadings ranging from 2.0 wt.% to 10.0 wt.%. The goal was to improve the mechanical properties of PETG in material extrusion (MEX) additive manufacturing (AM) and assess the effectiveness of Si3N4 as a reinforcing agent for this particular polymer. The process began with the production of filaments, which were subsequently fed into a 3D printer to create various specimens. The specimens were manufactured according to international standards to ensure their suitability for various tests. The thermal, rheological, mechanical, electrical, and morphological properties of the prepared samples were evaluated. The mechanical performance investigations performed included tensile, flexural, Charpy impact, and microhardness tests. Scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping were performed to investigate the structures and morphologies of the samples, respectively. Among all the composites tested, the PETG/6.0 wt.% Si3N4 showed the greatest improvement in mechanical properties (with a 24.5% increase in tensile strength compared to unfilled PETG polymer), indicating its potential for use in MEX 3D printing when enhanced mechanical performance is required from the PETG polymer.

8.
J Imaging ; 10(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38667993

ABSTRACT

Scanning micrο X-ray fluorescence (µ-XRF) and multispectral imaging (MSI) were applied to study philately stamps, selected for their small size and intricate structures. The µ-XRF measurements were accomplished using the M6 Jetstream Bruker scanner under optimized conditions for spatial resolution, while the MSI measurements were performed employing the XpeCAM-X02 camera. The datasets were acquired asynchronously. Elemental distribution maps can be extracted from the µ-XRF dataset, while chemical distribution maps can be obtained from the analysis of the multispectral dataset. The objective of the present work is the fusion of the datasets from the two spectral imaging modalities. An algorithmic co-registration of the two datasets is applied as a first step, aiming to align the multispectral and µ-XRF images and to adapt to the pixel sizes, as small as a few tens of micrometers. The dataset fusion is accomplished by applying k-means clustering of the multispectral dataset, attributing a representative spectrum to each pixel, and defining the multispectral clusters. Subsequently, the µ-XRF dataset within a specific multispectral cluster is analyzed by evaluating the mean XRF spectrum and performing k-means sub-clustering of the µ-XRF dataset, allowing the differentiation of areas with variable elemental composition within the multispectral cluster. The data fusion approach proves its validity and strength in the context of philately stamps. We demonstrate that the fusion of two spectral imaging modalities enhances their analytical capabilities significantly. The spectral analysis of pixels within clusters can provide more information than analyzing the same pixels as part of the entire dataset.

9.
Polymers (Basel) ; 15(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139968

ABSTRACT

High-density polyethylene polymer (HDPE) and carbon black (CB) were utilized to create HDPE/CB composites with different filler concentrations (0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 16.0, 20.0, and 24.0 wt.%). The composites were extruded into filaments, which were then utilized to fabricate 3D-printed specimens with the material extrusion (MEX) method, suitable for a variety of standard mechanical tests. The electrical conductivity was investigated. Furthermore, thermogravimetric analysis and differential scanning calorimetry were carried out for all the HDPE/CB composites and pure HDPE. Scanning electron microscopy in different magnifications was performed on the specimens' fracture and side surfaces to investigate the morphological characteristics. Rheological tests and Raman spectroscopy were also performed. Eleven different tests in total were performed to fully characterize the composites and reveal connections between their various properties. HDPE/CB 20.0 wt.% showed the greatest reinforcement results in relation to pure HDPE. Such composites are novel in the MEX 3D printing method. The addition of the CB filler greatly enhanced the performance of the popular HDPE polymer, expanding its applications.

10.
ACS Macro Lett ; 12(12): 1665-1671, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37992200

ABSTRACT

The development of single-ion solid polymer electrolytes with high ion conductivity holds the key to the realization of safe, long-lasting, high-energy batteries. Here we introduce the use of core-shell nanostructured polyanionic particles, composed of polyanion asymmetric miktoarm stars with a large number of glassy polystyrene-based polyanion arms that complement longer poly(ethylene oxide), PEO, arms, as additives to low molecular weight, liquid PEO. Due to the proposed macromolecular design approach, the polyanion particles are well dispersed for wt % ≤ 55 that enables the formation of a nanostructured single-ion electrolyte with highly interconnected channels composed of liquid PEO that promotes fast ion transport. Noticeably, while the ion conductivity remains fairly unaffected and close to 10-5 S/cm at room temperature with nanoparticle loading, the shear modulus monotonically increases by several order of magnitudes indicating a very strong decoupling between the antagonistic properties of mechanical modulus and ion conductivity.

11.
Polymers (Basel) ; 15(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37835932

ABSTRACT

The goal of this paper is to investigate tungsten carbide (WC) as a reinforcement in the popular material extrusion (MEX) additive manufacturing (AM) procedure. The impressive characteristics of WC demonstrate its potential as a valuable additive for commonly used polymeric matrices in MEX 3D printing, offering reinforcement and stabilization properties. The mechanical properties of hybrid polymer/ceramic nanocomposites made up of various filler loadings (0-10 wt. %) of medical-grade polylactic acid (PLA) and WC were studied. The mechanical characteristics, structure, and thermomechanical properties of the resulting compounds were fully characterized following the respective standards. The fracture mechanisms were revealed with Scanning Electron Microscopy. Overall, a laborious effort was implemented with fifteen different tests to fully characterize the nanocomposites prepared. In comparison to the raw PLA material, the tensile strength of the 4.0 wt. % WC PLA/WC nanocomposite was improved by 42.5% and the flexural strength by 41.9%. In the microhardness test, a 120.4% improvement was achieved, justifying the properties of WC ceramic. According to these findings, PLA nanocomposites reach high-performance polymer specifications, expanding their potential use, especially in wear-related applications.

12.
Int J Mol Sci ; 24(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37569759

ABSTRACT

Circulating cell-free DNA (ccfDNA) is a liquid biopsy biomaterial attracting significant attention for the implementation of precision medicine diagnostics. Deeper knowledge related to its structure and biology would enable the development of such applications. In this study, we employed Raman spectroscopy to unravel the biomolecular profile of human ccfDNA in health and disease. We established reference Raman spectra of ccfDNA samples from healthy males and females with different conditions, including cancer and diabetes, extracting information about their chemical composition. Comparative observations showed a distinct spectral pattern in ccfDNA from breast cancer patients taking neoadjuvant therapy. Raman analysis of ccfDNA from healthy, prediabetic, and diabetic males uncovered some differences in their biomolecular fingerprints. We also studied ccfDNA released from human benign and cancer cell lines and compared it to their respective gDNA, confirming it mirrors its cellular origin. Overall, we explored for the first time Raman spectroscopy in the study of ccfDNA and provided spectra of samples from different sources. Our findings introduce Raman spectroscopy as a new approach to implementing liquid biopsy diagnostics worthy of further elaboration.


Subject(s)
Breast Neoplasms , Cell-Free Nucleic Acids , Male , Female , Humans , Spectrum Analysis, Raman , Cell-Free Nucleic Acids/genetics , Liquid Biopsy , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics
13.
Materials (Basel) ; 16(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629963

ABSTRACT

The present work reports on the fabrication of high-density polyethylene sponges, decorated with Mn-doped ZnO nanostructures. The sponges were developed utilizing three-dimensional printing technology, while Mn-doped ZnO nanostructures, with varying doping levels, were grown at mild temperatures. The nanostructures were fully characterized by means of scanning electron microscopy, X-ray diffraction, and Raman spectroscopy, revealing the existence of Mn doping. Moreover, their photocatalytic properties were investigated using the degradation/decolorization of a commercially available liquid laundry detergent, based on synthetic, less foaming ingredients, under UV irradiation. The Mn-doped ZnO nanostructures show better photocatalytic activity at higher doping levels. This study demonstrates that it is possible to achieve the adequate degradation of a typical detergent solution in water by means of low-cost and environmentally friendly approaches, while Mn-doped ZnO/HDPE nanostructures are good candidates for real environmental applications.

14.
Front Cell Dev Biol ; 11: 1242481, 2023.
Article in English | MEDLINE | ID: mdl-37635874

ABSTRACT

Intra-thymic T cell development is coordinated by the regulatory actions of SATB1 genome organizer. In this report, we show that SATB1 is involved in the regulation of transcription and splicing, both of which displayed deregulation in Satb1 knockout murine thymocytes. More importantly, we characterized a novel SATB1 protein isoform and described its distinct biophysical behavior, implicating potential functional differences compared to the commonly studied isoform. SATB1 utilized its prion-like domains to transition through liquid-like states to aggregated structures. This behavior was dependent on protein concentration as well as phosphorylation and interaction with nuclear RNA. Notably, the long SATB1 isoform was more prone to aggregate following phase separation. Thus, the tight regulation of SATB1 isoforms expression levels alongside with protein post-translational modifications, are imperative for SATB1's mode of action in T cell development. Our data indicate that deregulation of these processes may also be linked to disorders such as cancer.

15.
Nanomaterials (Basel) ; 13(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446421

ABSTRACT

The influence of nanoparticles (NPs) in zirconium oxide (ZrO2) as a strengthening factor of Polylactic Acid (PLA) and Polyamide 12 (PA12) thermoplastics in material extrusion (MEX) additive manufacturing (AM) is reported herein for the first time. Using a melt-mixing compounding method, zirconium dioxide nanoparticles were added at four distinct filler loadings. Additionally, 3D-printed samples were carefully examined for their material performance in various standardized tests. The unfilled polymers were the control samples. The nature of the materials was demonstrated by Raman spectroscopy and thermogravimetric studies. Atomic Force Microscopy and Scanning Electron Microscopy were used to comprehensively analyze their morphological characteristics. Zirconium dioxide NPs showed an affirmative reinforcement tool at all filler concentrations, while the optimized material was calculated with loading in the range of 1.0-3.0 wt.% (3.0 wt.% for PA12, 47.7% increase in strength; 1.0 wt.% for PLA, 20.1% increase in strength). PA12 and PLA polymers with zirconium dioxide in the form of nanocomposite filaments for 3D printing applications could be used in implementations using thermoplastic materials in engineering structures with improved mechanical behavior.

16.
Polymers (Basel) ; 15(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37447432

ABSTRACT

Herein, polytetrafluoroethylene (PTFE) is evaluated as a reinforcement agent in material extrusion (MEX) additive manufacturing (AM), aiming to develop nanocomposites with enhanced mechanical performance. Loadings up to 4.0 wt.% were introduced as fillers of polylactic acid (PLA) and polyamide 12 (PA12) matrices. Filaments for MEX AM were prepared to produce corresponding 3D-printed samples. For the thorough characterization of the nanocomposites, a series of standardized mechanical tests were followed, along with AFM, TGA, Raman spectroscopy, EDS, and SEM analyses. The results showed an improved mechanical response for filler concentrations between 2.0 and 3.0 wt.%. The enhancement for the PLA/PTFE 2.0 wt.% in the tensile strength reached 21.1% and the modulus of elasticity 25.5%; for the PA12/PTFE 3.0 wt.%, 34.1%, and 41.7%, respectively. For PLA/PTFE 2.0 wt.%, the enhancement in the flexural strength reached 57.6% and the modulus of elasticity 25.5%; for the PA12/PTFE 3.0 wt.%, 14.7%, and 17.2%, respectively. This research enables the ability to deploy PTFE as a reinforcement agent in the PA12 and PLA thermoplastic engineering polymers in the MEX AM process, expanding the potential applications.

17.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37242004

ABSTRACT

The current research aimed to examine the thermomechanical properties of new nanocomposites in additive manufacturing (AM). Material extrusion (MEX) 3D printing was utilized to evolve acrylonitrile butadiene styrene (ABS) nanocomposites with silicon nitride nano-inclusions. Regarding the mechanical and thermal response, the fabricated 3D-printed samples were subjected to a course of standard tests, in view to evaluate the influence of the Si3N4 nanofiller content in the polymer matrix. The morphology and fractography of the fabricated filaments and samples were examined using scanning electron microscopy and atomic force microscopy. Moreover, Raman and energy dispersive spectroscopy tests were accomplished to evaluate the composition of the matrix polymer and nanomaterials. Silicon nitride nanoparticles were proved to induce a significant mechanical reinforcement in comparison with the polymer matrix without any additives or fillers. The optimal mechanical response was depicted to the grade ABS/Si3N4 4 wt. %. An impressive increase in flexural strength (30.3%) and flexural toughness (47.2%) was found. The results validate that these novel ABS nanocomposites with improved mechanical properties can be promising materials.

18.
J Mech Behav Biomed Mater ; 142: 105846, 2023 06.
Article in English | MEDLINE | ID: mdl-37084490

ABSTRACT

Optimization of reinforced nanocomposites for MEX 3D-printing remain strong industrial claims. Herein, the efficacy of three modeling methods, i.e., full factorial (FFD), Taguchi (TD), and Box-Behnken (BBD), on the performance of MEX 3D printed nanocomposites was investigated, aiming to reduce the experimental effort. Filaments of medical-grade Polyamide 12 (PA12) reinforced with Cellulose NanoFibers (CNF) were evolved. Besides the CNF loading, 3D printing settings such as Nozzle (NT) and Bed (BΤ) Temperatures were optimization goals aiming to maximize the mechanical response. Three parameters and three levels of FFD were compliant with the ASTM-D638 standard (27 runs, five repetitions). An L9 orthogonal TD and a 15 runs BBD were compiled. In FFD, wt.3%CNF, 270 °C NT, and 80 °C BΤ led to 24% higher tensile strength compared to pure PA12. TGA, RAMAN, and SEM analyses interpreted the reinforcement mechanisms. TD and BBD exhibited fair approximations, requiring 7.4% and 11.8% of the FFD experimental effort.


Subject(s)
Cellulose , Nanofibers , Nylons , Tensile Strength
19.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36839037

ABSTRACT

Acrylonitrile Butadiene Styrene (ABS) nanocomposites were developed using Material Extrusion (MEX) Additive Manufacturing (AM) and Fused Filament Fabrication (FFF) methods. A range of mechanical tests was conducted on the produced 3D-printed structures to investigate the effect of Titanium Nitride (TiN) nanoparticles on the mechanical response of thermoplastic polymers. Detailed morphological characterization of the produced filaments and 3D-printed specimens was carried out using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). High-magnification images revealed a direct impact of the TiN concentration on the surface characteristics of the nanocomposites, indicating a strong correlation with their mechanical performance. The chemical compositions of the raw and nanocomposite materials were thoroughly investigated by conducting Raman and Energy Dispersive Spectroscopy (EDS) measurements. Most of the mechanical properties were improved with the inclusion of TiN nanoparticles with a content of 6 wt. % to reach the optimum mechanical response overall. ABS/TiN 6 wt. % exhibits remarkable increases in flexural modulus of elasticity (42.3%) and toughness (54.0%) in comparison with pure ABS. The development of ABS/TiN nanocomposites with reinforced mechanical properties is a successful example that validates the feasibility and powerful abilities of MEX 3D printing in AM.

20.
Materials (Basel) ; 15(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36556610

ABSTRACT

Polycarbonate-based nanocomposites were developed herein through a material extrusion (MEX) additive manufacturing (AM) process. The fabrication of the final nanocomposite specimens was achieved by implementing the fused filament fabrication (FFF) 3D printing process. The impact of aluminum nitride (AlN) nanoparticles on the thermal and mechanical behavior of the polycarbonate (PC) matrix was investigated thoroughly for the fabricated nanocomposites, carrying out a range of thermomechanical tests. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) provided information about the morphological and surface characteristics of the produced specimens. Using energy dispersive spectroscopy (EDS), the elemental composition of the nanocomposite materials was validated. Raman spectroscopy revealed no chemical interactions between the two material phases. The results showed the reinforcement of most mechanical properties with the addition of the AlN nanoparticles. The nanocomposite with 2 wt.% filler concentration exhibited the best mechanical performance overall, with the highest improvements observed for the tensile strength and toughness of the fabricated specimens, with a percentage of 32.8% and 51.6%, respectively, compared with the pure polymer. The successful AM of PC/AlN nanocomposites with the MEX process is a new paradigm, which expands 3D printing technology and opens a new route for the development of nanocomposite materials with multifunctional properties for industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL