Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 55(33): 9601-5, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27355874

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology, and neurology. N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) has been identified as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. Its efficacy was demonstrated in modulation of tau phosphorylation in vitro and in vivo. Whereas the kinetics of PF-367 binding in brain tissues are too fast for an effective therapeutic agent, the pharmacokinetic profile of PF-367 is ideal for discovery of radiopharmaceuticals for GSK-3 in the central nervous system. A (11) C-isotopologue of PF-367 was synthesized and preliminary PET imaging studies in non-human primates confirmed that we have overcome the two major obstacles for imaging GSK-3, namely, reasonable brain permeability and displaceable binding.


Subject(s)
Brain/drug effects , Brain/diagnostic imaging , Neuroimaging , Oxazoles/pharmacology , Positron-Emission Tomography , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , tau Proteins/antagonists & inhibitors , Brain/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Humans , Models, Molecular , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry , tau Proteins/metabolism
2.
Bioorg Med Chem Lett ; 18(8): 2562-6, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18387300

ABSTRACT

Single enantiomer (SS) and (RR) 2-[(phenoxy)(phenyl)methyl]morpholine derivatives 5, 8-23 are inhibitors of monoamine reuptake. Target compounds were prepared using an enantioselective synthesis employing a highly specific enzyme-catalysed resolution of racemic n-butyl 4-benzylmorpholine-2-carboxylate (26) as the key step. Structure-activity relationships established that serotonin and noradrenaline reuptake inhibition are functions of stereochemistry and aryl/aryloxy ring substitution. Consequently, selective SRI, selective NRI and dual SNRIs were all identified. One of these compounds, a potent and selective dual SNRI, (SS)-5a was selected as a candidate for further pre-clinical evaluation.


Subject(s)
Drug Design , Morpholines/chemical synthesis , Morpholines/pharmacology , Norepinephrine/metabolism , Serotonin/metabolism , Cells, Cultured , Humans , Liver/drug effects , Liver/metabolism , Molecular Structure , Morpholines/chemistry , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 17(3): 756-60, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17095227

ABSTRACT

The Type 1 PI3Kinases comprise a family of enzymes, which primarily phosphorylate PIP2 to give the second messenger PIP3, a key player in many intracellular signaling processes [Science, 2002, 296, 1655; Trends Pharmacol. Sci.2003, 24, 366]. Of the four type 1 PI3Ks, the gamma-isoform, which is expressed almost exclusively in leukocytes [Curr. Biol., 1997, 7, R470], is of particular interest with respect to its role in inflammatory diseases such as rheumatoid arthritis (RA) and chronic obstructive pulmonary disease (COPD) [Mol. Med. Today, 2000, 6, 347]. Investigation of a series of 4,6-disubstituted-4H-benzo[1,4]oxazin-3-ones has led to the identification of single-digit nanomolar inhibitors of PI3Kgamma, several of which had good cell based activity and were shown to be active in vivo in an aspectic peritonitis model of inflammatory cell migration.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Oxazines/chemical synthesis , Oxazines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Animals , Baculoviridae/drug effects , Baculoviridae/enzymology , Class Ib Phosphatidylinositol 3-Kinase , Drug Design , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Indicators and Reagents , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Magnetic Resonance Spectroscopy , Mice , Mice, Knockout , Phosphatidylinositol 3-Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL