Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39131288

ABSTRACT

I.Protein misfolding is a widespread phenomenon that can result in the formation of protein aggregates, which are markers of various disease states, including Alzheimer's disease (AD). In AD, amyloid beta (Aß) peptides, particularly Aß40 and Aß42, are key players in the disease's progression, as they aggregate to form amyloid plaques and contribute to neuronal toxicity. Recent research has shifted attention from solely Aß fibrils to also include Aß protofibrils and oligomers as potentially critical pathogenic agents. Particularly, oligomers demonstrate greater toxicity compared to other Aß specie. Hence, there is an increased interest in studying the correlation between toxicity and their structure and aggregation pathway. The present study investigates the aggregation of a 150 kDa Aß42 oligomer that does not lead to fibril formation over time. Using negative stain transmission electron microscopy (TEM), size exclusion chromatography (SEC), dynamic light scattering (DLS), and cryo-electron microscopy (cryo-EM), we demonstrate that 150 kDa Aß42 oligomers form higher-order string-like assemblies over time. The strings are unique from the classical Aß fibril structures. The significance of our work lies in elucidating molecular behavior of a novel non-fibrillar form of Aß42 aggregate.

2.
bioRxiv ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39071339

ABSTRACT

Biomolecular condensates (BCs) are membraneless hubs enriched in proteins and nucleic acids that have become important players in many cellular functions. Uncovering the sequence determinants of proteins for phase separation is important in understanding the biophysical and biochemical properties of BCs. Despite significant discoveries in the last decade, the role of cysteine residues in BC formation and dissolution has remained unknown. Here, to determine the involvement of disulfide crosslinks and their redox sensitivity in BCs, we designed a 'stickers and spacers' model of phase-separating peptides interspersed with cysteines. Through biophysical investigations, we learned that cysteines promote liquid-liquid phase separation in oxidizing conditions and perpetuate liquid condensates through disulfide crosslinks, which can be reversibly tuned with redox chemistry. By varying the composition of cysteines, subtle but distinct changes in the viscoelastic behavior of the condensates were observed. Empirically, we conclude that cysteines are neither stickers nor spacers but function as covalent nodes to lower the effective concentrations for sticker interactions and inhibit system-spanning percolation networks. Together, we unmask the role of cysteines in protein phase behavior and the potential to develop tunable, redox-sensitive viscoelastic materials.

3.
Protein Sci ; 33(8): e5102, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39037281

ABSTRACT

Peptide self-assembly into amyloid fibrils provides numerous applications in drug delivery and biomedical engineering applications. We augment our previously-established computational screening technique along with experimental biophysical characterization to discover 7-mer peptides that self-assemble into "parallel ß-sheets", that is, ß-sheets with N-terminus-to-C-terminus 𝛽-strand vectors oriented in parallel. To accomplish the desired ß-strand organization, we applied the PepAD amino acid sequence design software to the Class-1 cross-ß spine defined by Sawaya et al. This molecular configuration includes two layers of parallel ß-sheets stacked such that N-terminus-to-C-terminus vectors are oriented antiparallel for molecules on adjacent ß-sheets. The first cohort of PepAD identified peptides were examined for their fibrillation behavior in DMD/PRIME20 simulations, and the top performing sequence was selected as a prototype for a subsequent round of sequence refinement. The two rounds of design resulted in a library of eight 7-mer peptides. In DMD/PRIME20 simulations, five of these peptides spontaneously formed fibril-like structures with a predominantly parallel 𝛽-sheet arrangement, two formed fibril-like structure with <50% in parallel 𝛽-sheet arrangement and one remained a random coil. Among the eight candidate peptides produced by PepAD and DMD/PRIME20, five were synthesized and purified. All five assembled into amyloid fibrils composed of parallel ß-sheets based on Fourier transform infrared spectroscopy, circular dichroism, electron microscopy, and thioflavin-T fluorescence spectroscopy measurements.


Subject(s)
Monte Carlo Method , Protein Conformation, beta-Strand , Nanofibers/chemistry , Peptides/chemistry , Amino Acid Sequence , Protein Structure, Secondary , Amyloid/chemistry , Models, Molecular , Molecular Dynamics Simulation
4.
J Phys Chem B ; 128(22): 5387-5396, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38787393

ABSTRACT

Q11 peptide nanofibers are used as a biomaterial for applications such as antigen presentation and tissue engineering, yet detailed knowledge of molecular-level structure has not been reported. The Q11 peptide sequence was designed using heuristics-based patterning of hydrophobic and polar amino acids with oppositely charged amino acids placed at opposite ends of the sequence to promote antiparallel ß-sheet formation. In this work, we employed solid-state nuclear magnetic resonance spectroscopy (NMR) to evaluate whether the molecular organization within Q11 self-assembled peptide nanofibers is consistent with the expectations of the peptide designers. We discovered that Q11 forms a distribution of molecular structures. NMR data from two-dimensional (2D) 13C-13C dipolar-assisted rotational resonance indicate that the K3 and E9 residues between Q11 ß-strands are spatially proximate (within ∼0.6 nm). Frequency-selective rotational echo double resonance (fsREDOR) on K3 Nζ and E9 Cδ-labeled sites showed that approximately 9% of the sites are close enough for salt bridge formation to occur. Surprisingly, dipolar recoupling measurements revealed that Q11 peptides do not assemble into antiparallel ß-sheets as expected, and structural analysis using Fourier-transform infrared spectroscopy and 2D NMR alone can be misleading. 13C PITHIRDS-CT dipolar recoupling measurements showed that the most abundant structure consists of parallel ß-sheets, in contrast to the expected antiparallel ß-sheet structure. Structural heterogeneity was detected from 15N{13C} REDOR measurements, with approximately 22% of ß-strands having antiparallel nearest neighbors. We cannot propose a complete structural model of Q11 nanofibers because of the complexity involved when examining structurally heterogeneous samples using NMR. Altogether, our results show that while heuristics-based patterning is effective in promoting ß-sheet formation, designing a peptide sequence to form a targeted ß-strand arrangement remains challenging.


Subject(s)
Nanofibers , Peptides , Protein Conformation, beta-Strand , Nanofibers/chemistry , Peptides/chemistry , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Sequence
5.
Nat Commun ; 15(1): 3264, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627405

ABSTRACT

A long-standing challenge in bioinspired materials is to design and synthesize synthetic materials that mimic the sophisticated structures and functions of natural biomaterials, such as helical protein assemblies that are important in biological systems. Herein, we report the formation of a series of nanohelices from a type of well-developed protein-mimetics called peptoids. We demonstrate that nanohelix structures and supramolecular chirality can be well-controlled through the side-chain chemistry. Specifically, the ionic effects on peptoids from varying the polar side-chain groups result in the formation of either single helical fiber or hierarchically stacked helical bundles. We also demonstrate that the supramolecular chirality of assembled peptoid helices can be controlled by modifying assembling peptoids with a single chiral amino acid side chain. Computational simulations and theoretical modeling predict that minimizing exposure of hydrophobic domains within a twisted helical form presents the most thermodynamically favorable packing of these amphiphilic peptoids and suggests a key role for both polar and hydrophobic domains on nanohelix formation. Our findings establish a platform to design and synthesize chiral functional materials using sequence-defined synthetic polymers.


Subject(s)
Peptoids , Peptoids/chemistry , Amino Acids
6.
ACS Appl Mater Interfaces ; 16(13): 16912-16926, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38527460

ABSTRACT

Bioinspired strategies have been given extensive attention for the recovery of rare earth elements (REEs) from waste streams because of their high selectivity, regeneration potential, and sustainability as well as low cost. Lanmodulin protein is an emerging biotechnology that is highly selective for REE binding. Mimicking lanmodulin with shorter peptides is advantageous because they are simpler and potentially easier to manipulate and optimize. Lanmodulin-derived peptides have been found to bind REEs, but their properties have not been explored when immobilized on solid substrates, which is required for many advanced separation technologies. Here, two peptides, LanM1 and scrambled LanM1, are designed from the EF-hand loop 1 of lanmodulin and investigated for their binding affinity toward different REEs when surface-bound. First, the ability of LanM1 to bind REEs was confirmed and characterized in solution using circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations for Ce(III) ions. Isothermal titration calorimetry (ITC) was used to further analyze the binding of the LanM1 to Ce(III), Nd(III), Eu(III), and Y(III) ions and in low-pH conditions. The performance of the immobilized peptides on a model gold surface was examined using a quartz crystal microbalance with dissipation (QCM-D). The studies show that the LanM1 peptide has a stronger REE binding affinity than that of scrambled LanM1 when in solution and when immobilized on a gold surface. QCM-D data were fit to the Langmuir adsorption model to estimate the surface-bound dissociation constant (Kd) of LanM1 with Ce(III) and Nd(III). The results indicate that LanM1 peptides maintain a high affinity for REEs when immobilized, and surface-bound LanM1 has no affinity for potential competitor calcium and copper ions. The utility of surface-bound LanM1 peptides was further demonstrated by immobilizing them to gold nanoparticles (GNPs) and capturing REEs from solution in experiments utilizing an Arsenazo III-based colorimetric dye displacement assay and ultraviolet-visible (UV-vis) spectrophotometry. The saturated adsorption capacity of GNPs was estimated to be around 3.5 µmol REE/g for Ce(III), Nd(III), Eu(III), and Y(III) ions, with no binding of non-REE Ca(II) ions observed.


Subject(s)
Metal Nanoparticles , Metals, Rare Earth , Gold , Metals, Rare Earth/chemistry , Peptides , Ions
7.
Biomacromolecules ; 25(3): 1429-1438, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38408372

ABSTRACT

We applied solid- and solution-state nuclear magnetic resonance spectroscopy to examine the structure of multidomain peptides composed of self-assembling ß-sheet domains linked to bioactive domains. Bioactive domains can be selected to stimulate specific biological responses (e.g., via receptor binding), while the ß-sheets provide the desirable nanoscale properties. Although previous work has established the efficacy of multidomain peptides, molecular-level characterization is lacking. The bioactive domains are intended to remain solvent-accessible without being incorporated into the ß-sheet structure. We tested for three possible anticipated molecular-level consequences of introducing bioactive domains to ß-sheet-forming peptides: (1) the bioactive domain has no effect on the self-assembling peptide structure; (2) the bioactive domain is incorporated into the ß-sheet nanofiber; and (3) the bioactive domain interferes with self-assembly such that nanofibers are not formed. The peptides involved in this study incorporated self-assembling domains based on the (SL)6 motif and bioactive domains including a VEGF-A mimic (QK), an IGF-mimic (IGF-1c), and a de novo SARS-CoV-2 binding peptide (SBP3). We observed all three of the anticipated outcomes from our examination of peptides, illustrating the unintended structural effects that could adversely affect the desired biofunctionality and biomaterial properties of the resulting peptide hydrogel. This work is the first attempt to evaluate the structural effects of incorporating bioactive domains into a set of peptides unified by a similar self-assembling peptide domain. These structural insights reveal unmet challenges in the design of highly tunable bioactive self-assembling peptide hydrogels.


Subject(s)
Nanofibers , Peptides , Protein Conformation, beta-Strand , Peptides/chemistry , Nanofibers/chemistry , Hydrogels/chemistry , Biocompatible Materials
8.
Nat Commun ; 15(1): 1142, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326301

ABSTRACT

The lasting threat of viral pandemics necessitates the development of tailorable first-response antivirals with specific but adaptive architectures for treatment of novel viral infections. Here, such an antiviral platform has been developed based on a mixture of hetero-peptides self-assembled into functionalized ß-sheets capable of specific multivalent binding to viral protein complexes. One domain of each hetero-peptide is designed to specifically bind to certain viral proteins, while another domain self-assembles into fibrils with epitope binding characteristics determined by the types of peptides and their molar fractions. The self-assembled fibrils maintain enhanced binding to viral protein complexes and retain high resilience to viral mutations. This method is experimentally and computationally tested using short peptides that specifically bind to Spike proteins of SARS-CoV-2. This platform is efficacious, inexpensive, and stable with excellent tolerability.


Subject(s)
COVID-19 , Humans , Peptides/chemistry , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Viral Proteins , Spike Glycoprotein, Coronavirus/metabolism
10.
ACS Appl Mater Interfaces ; 16(1): 364-375, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38145951

ABSTRACT

Growth factor (GF) mimicry involves recapitulating the signaling of larger molecules or cells. Although GF mimicry holds considerable promise in tissue engineering and drug design applications, difficulties in targeting the signaling molecule to the site of delivery and dissociation of mimicking peptides from their target receptors continue to limit its clinical application. To address these challenges, we utilized a self-assembling peptide (SAP) platform to generate synthetic insulin-like growth factor (IGF)-signaling, self-assembling GFs. Our peptide hydrogels are biocompatible and bind target IGF receptors in a dose-dependent fashion, activate proangiogenic signaling, and facilitate formation of angiogenic microtubules in vitro. Furthermore, infiltrated hydrogels are stable for weeks to months. We conclude that the enhanced targeting and long-term stability of our SAP/GF mimicry implants may improve the efficacy and safety of future GF mimic therapeutics.


Subject(s)
Insulin-Like Peptides , Peptides , Peptides/chemistry , Intercellular Signaling Peptides and Proteins , Tissue Engineering , Hydrogels/chemistry
11.
Angew Chem Int Ed Engl ; 62(51): e202314531, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37931093

ABSTRACT

Self-assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side-chain chemistry affects the hierarchical co-assembly of a family of charge-complementary ß-sheet-forming peptide pairs known as CATCH(X+/Y-) at physiologic pH and ionic strength in water. In a concentration-dependent manner, the CATCH(6K+) (Ac-KQKFKFKFKQK-Am) and CATCH(6D-) (Ac-DQDFDFDFDQD-Am) pair formed either ß-sheet-rich microspheres or ß-sheet-rich gels with a micron-scale plate-like morphology, which were not observed with other CATCH(X+/Y-) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N- and C-terminal amino acids in CATCH(6K+) and CATCH(6D-) to Qs, increased observed co-assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)-green fluorescent protein fusions could be incorporated into the ß-sheet plates and microspheres formed by the CATCH(6K+/6D-) pair, demonstrating the potential to endow functionality.


Subject(s)
Peptides , Protein Conformation, beta-Strand , Peptides/chemistry , Gels
12.
Commun Biol ; 6(1): 1184, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37989804

ABSTRACT

Amyloid beta (Aß) aggregation is a slow process without seeding or assisted nucleation. Sodium dodecyl sulfate (SDS) micelles stabilize Aß42 small oligomers (in the dimer to tetramer range); subsequent SDS removal leads to a 150-kD Aß42 oligomer. Dodecylphosphorylcholine (DPC) micelles also stabilize an Aß42 tetramer. Here we investigate the detergent-assisted oligomerization pathway by solid-state NMR spectroscopy and molecular dynamics simulations. SDS- and DPC-induced oligomers have the same structure, implying a common oligomerization pathway. An antiparallel ß-sheet formed by the C-terminal region, the only stable structure in SDS and DPC micelles, is directly incorporated into the 150-kD oligomer. Three Gly residues (at positions 33, 37, and 38) create holes that are filled by the SDS and DPC hydrocarbon tails, thereby turning a potentially destabilizing feature into a stabilizing factor. These observations have implications for endogenous Aß aggregation at cellular interfaces.


Subject(s)
Amyloid beta-Peptides , Detergents , Amyloid beta-Peptides/metabolism , Micelles , Protein Structure, Secondary
13.
Biomacromolecules ; 24(9): 4051-4063, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37552220

ABSTRACT

The tunability of chromatic phases adapted by chromogenic polymers such as polydiacetylene (PDA) is key to their utility for robust sensing applications. Here, we investigated the influence of charged peptide interactions on the structure-dependent thermochromicity of amphiphilic PDAs. Solid-state NMR and circular dichroism analyses show that our oppositely charged peptide-PDA samples have distinct degrees of structural order, with the coassembled sample being in between the ß-sheet-like positive peptide-PDA and the relatively disordered negative peptide-PDA. All solutions exhibit thermochromicity between 20 and 80 °C, whereby the hysteresis of the blue, planar phase is much larger than that of the red, twisted phase. Resonance Raman spectroscopy of films demonstrates that only coassemblies with electrostatic complementarity stabilize coexisting blue and red PDA phases. This work reveals the nature of the structural changes responsible for the thermally responsive chromatic transitions of biomolecule-functionalized polymeric materials and how this process can be directed by sequence-dictated electrostatic interactions.


Subject(s)
Nanostructures , Polyynes , Polyynes/chemistry , Polyacetylene Polymer , Polymers/chemistry , Peptides
14.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557940

ABSTRACT

The brains of Alzheimer's disease (AD) patients contain numerous amyloid plaques that are diagnostic of the disease. The plaques are primarily composed of the amyloidogenic peptides proteins Aß40 and Aß42, which are derived by the processing of the amyloid pre-cursor protein (APP) by two proteases called ß-secretase and γ-secretase. Aß42 differs from Aß40 in having two additional hydrophobic amino acids, ILE and ALA, at the C-terminus. A small percentage of AD is autosomal dominant (ADAD) and linked either to the genes for the presenilins, which are part of γ-secretase, or APP. Because ADAD shares most pathogenic features with widespread late-onset AD, Aß peptides have become the focus of AD research. Fibrils formed by the aggregation of these peptides are the major component of plaques and were initially targeted in AD therapy. However, the fact that the abundance of plaques does not correlate well with cognitive decline in AD patients has led investigators to examine smaller Aß aggregates called oligomers. The low levels and heterogeneity of Aß oligomers have made the determination of their structures difficult, but recent structure determinations of oligomers either formed or initiated in detergents have been achieved. We report here on the structures of these oligomers and suggest how they may be involved in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloidogenic Proteins/metabolism , Brain/metabolism , Peptide Fragments/chemistry
15.
J Biol Chem ; 298(11): 102498, 2022 11.
Article in English | MEDLINE | ID: mdl-36116552

ABSTRACT

Amyloid aggregates of specific proteins constitute important pathological hallmarks in many neurodegenerative diseases, defining neuronal degeneration and disease onset. Recently, increasing numbers of patients show comorbidities and overlaps between multiple neurodegenerative diseases, presenting distinct phenotypes. Such overlaps are often accompanied by colocalizations of more than one amyloid protein, prompting the question of whether direct interactions between different amyloid proteins could generate heterotypic amyloids. To answer this question, we investigated the effect of α-synuclein (αS) on the DNA-binding protein TDP-43 aggregation inspired by their coexistence in pathologies such as Lewy body dementia and limbic predominant age-related TDP-43 encephalopathy. We previously showed αS and prion-like C-terminal domain (PrLD) of TDP-43 synergistically interact to generate toxic heterotypic aggregates. Here, we extend these studies to investigate whether αS induces structurally and functionally distinct polymorphs of PrLD aggregates. Using αS-PrLD heterotypic aggregates generated in two different stoichiometric proportions, we show αS can affect PrLD fibril forms. PrLD fibrils show distinctive residue level signatures determined by solid state NMR, dye-binding capability, proteinase K (PK) stability, and thermal stability toward SDS denaturation. Furthremore, by gold nanoparticle labeling and transmission electron microscopy, we show the presence of both αS and PrLD proteins within the same fibrils, confirming the existence of heterotypic amyloid fibrils. We also observe αS and PrLD colocalize in the cytosol of neuroblastoma cells and show that the heterotypic PrLD fibrils selectively induce synaptic dysfunction in primary neurons. These findings establish the existence of heterotypic amyloid and provide a molecular basis for the observed overlap between synucleinopathies and TDP-43 proteinopathies.


Subject(s)
Metal Nanoparticles , Neurodegenerative Diseases , Neurotoxicity Syndromes , Humans , alpha-Synuclein/metabolism , Gold , Amyloid/chemistry , Neurodegenerative Diseases/metabolism , DNA-Binding Proteins/genetics
16.
PNAS Nexus ; 1(5): pgac263, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712347

ABSTRACT

Screening amino acid sequence space via experiments to discover peptides that self-assemble into amyloid fibrils is challenging. We have developed a computational peptide assembly design (PepAD) algorithm that enables the discovery of amyloid-forming peptides. Discontinuous molecular dynamics (DMD) simulation with the PRIME20 force field combined with the FoldAmyloid tool is used to examine the fibrilization kinetics of PepAD-generated peptides. PepAD screening of ∼10,000 7-mer peptides resulted in twelve top-scoring peptides with two distinct hydration properties. Our studies revealed that eight of the twelve in silico discovered peptides spontaneously form amyloid fibrils in the DMD simulations and that all eight have at least five residues that the FoldAmyloid tool classifies as being aggregation-prone. Based on these observations, we re-examined the PepAD-generated peptides in the sequence pool returned by PepAD and extracted five sequence patterns as well as associated sequence signatures for the 7-mer amyloid-forming peptides. Experimental results from Fourier transform infrared spectroscopy (FTIR), thioflavin T (ThT) fluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) indicate that all the peptides predicted to assemble in silico assemble into antiparallel ß-sheet nanofibers in a concentration-dependent manner. This is the first attempt to use a computational approach to search for amyloid-forming peptides based on customized settings. Our efforts facilitate the identification of ß-sheet-based self-assembling peptides, and contribute insights towards answering a fundamental scientific question: "What does it take, sequence-wise, for a peptide to self-assemble?".

17.
J Phys Chem B ; 125(50): 13599-13609, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34905370

ABSTRACT

Peptide coassembly, wherein at least two different peptides interact to form multicomponent nanostructures, is an attractive approach for generating functional biomaterials. Current efforts seek to design pairs of peptides, A and B, that form nanostructures (e.g., ß-sheets with ABABA-type ß-strand patterning) while resisting self-assembly (e.g., AAAAA-type or BBBBB-type ß-sheets). To confer coassembly behavior, most existing designs have been based on highly charged variants of known self-assembling peptides; like-charge repulsion limits self-assembly while opposite-charge attraction promotes coassembly. Recent analyses using solid-state NMR and coarse-grained simulations reveal that preconceived notions of structure and molecular organization are not always correct. This perspective highlights recent advances and key challenges to understanding and controlling peptide coassembly.


Subject(s)
Biocompatible Materials , Nanostructures , Magnetic Resonance Spectroscopy , Peptides , Protein Conformation, beta-Strand
18.
Sci Adv ; 7(36): eabf7668, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516924

ABSTRACT

Peptides' hierarchical coassembly into nanostructures enables controllable fabrication of multicomponent biomaterials. In this work, we describe a computational and experimental approach to design pairs of charge-complementary peptides that selectively coassemble into ß-sheet nanofibers when mixed together but remain unassembled when isolated separately. The key advance is a peptide coassembly design (PepCAD) algorithm that searches for pairs of coassembling peptides. Six peptide pairs are identified from a pool of ~106 candidates via the PepCAD algorithm and then subjected to DMD/PRIME20 simulations to examine their co-/self-association kinetics. The five pairs that spontaneously aggregate in kinetic simulations selectively coassemble in biophysical experiments, with four forming ß-sheet nanofibers and one forming a stable nonfibrillar aggregate. Solid-state NMR, which is applied to characterize the coassembling pairs, suggests that the in silico peptides exhibit a higher degree of structural order than the previously reported CATCH(+/−) peptides.

19.
J Phys Chem B ; 125(16): 4004-4015, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33876641

ABSTRACT

Coassembling peptides offer an additional degree of freedom in the design of nanostructured biomaterials when compared to analogous self-assembling peptides. Yet, our understanding of how amino acid sequences encodes coassembled nanofiber structure is limited. Prior work on a charge-complementary pair, CATCH+ and CATCH- peptides, detected like-peptide nearest neighbors (CATCH+:CATCH+ and CATCH-:CATCH-) within coassembled ß-sheet nanofibers; these self-associated peptide pairs marked a departure from an "ideal" coassembled structure. In this work, we employ solid-state NMR, isotope-edited FTIR, and coarse-grained molecular dynamics simulations to evaluate the alignment of ß-strands within CATCH peptide nanofibers. Both experimental and computational results suggest that CATCH molecules coassemble into structurally heterogeneous nanofibers, which is consistent with our observations in another coassembling system, the King-Webb peptides. Within ß-sheet nanofibers, ß-strands were found to have nearest neighbors aligned in-register parallel, in-register antiparallel, and out-of-register. In comparison to the King-Webb peptides, CATCH nanofibers exhibit a greater degree of structural heterogeneity. By comparing the amino acid sequences of CATCH and King-Webb peptides, we can begin to unravel sequence-to-structure relationships, which may encode more precise coassembled ß-sheet nanostructures.


Subject(s)
Nanofibers , Amino Acid Sequence , Molecular Dynamics Simulation , Peptides , Protein Conformation, beta-Strand
20.
J Phys Chem B ; 125(11): 2886-2897, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33683890

ABSTRACT

Myocilin-associated glaucoma is a new addition to the list of diseases linked to protein misfolding and amyloid formation. Single point variants of the ∼257-residue myocilin olfactomedin domain (mOLF) lead to mutant myocilin aggregation. Here, we analyze the 12-residue peptide P1 (GAVVYSGSLYFQ), corresponding to residues 326-337 of mOLF, previously shown to form amyloid fibrils in vitro and in silico. We applied solid-state NMR structural measurements to test the hypothesis that P1 fibrils adopt one of three predicted structures. Our data are consistent with a U-shaped fibril arrangement for P1, one that is related to the U-shape predicted previously in silico. Our data are also consistent with an antiparallel fibril arrangement, likely driven by terminal electrostatics. Our proposed structural model is reminiscent of fibrils formed by the Aß(1-40) Iowa mutant peptide, but with a different arrangement of molecular turn regions. Taken together, our results strengthen the connection between mOLF fibrils and the broader amylome and contribute to our understanding of the fundamental molecular interactions governing fibril architecture and stability.


Subject(s)
Glaucoma , Glycoproteins , Amyloid , Amyloid beta-Peptides , Cytoskeletal Proteins , Extracellular Matrix Proteins , Eye Proteins/genetics , Glaucoma/genetics , Glycoproteins/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL