Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 122: 110666, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37473709

ABSTRACT

Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.


Subject(s)
Autoimmune Diseases , Celiac Disease , Humans , Celiac Disease/therapy , Glutens , Diet, Gluten-Free , Diarrhea
2.
Life Sci ; 328: 121915, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37414139

ABSTRACT

AIMS: Ulcerative colitis is characterized as a chronic immune-mediated inflammatory condition, affecting the intestinal gastroenteric tissue. Previous studies revealed that Th-17 cells are key players in the pathogenesis of ulcerative colitis. RORγT (Retinoic-acid-receptor-related orphan receptor-gamma T) is a lineage-specific transcription factor of Th-17 cells and thus has a role in their differentiation. Transient inhibition of RORγT has been reported to attenuate the differentiation of Th-17 cells and secretion of interleukin-17 (IL-17). Here, we investigated the efficacy of topotecan in ameliorating ulcerative colitis in rodents, via inhibition of the RORγT transcription factor. MAIN METHODS AND KEY FINDINGS: Experimental ulcerative colitis was induced in rats by intrarectal acetic acid administration. Topotecan attenuated the severity of ulcerative colitis in rats by revoking neutrophils and macrophage infiltration to the colon. It also alleviated diarrhea and rectal bleeding and improved body weight. Further, attenuation of RORγT and IL-17 expression was observed in topotecan treated animals. Levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß in the colon tissue were reduced by topotecan treatment. Significant reduction in malondialdehyde level, elevation of superoxide dismutase (SOD) and catalase activity was observed in the colon tissue of rats treated with topotecan compared to the diseased group. SIGNIFICANCE: This study shows the therapeutic potential of topotecan in attenuating ulcerative colitis in rats probably via inhibition of the RORγT transcription factor and downstream mediators of Th-17 cells.


Subject(s)
Colitis, Ulcerative , Colitis , Rats , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Acetic Acid/toxicity , Topotecan/pharmacology , Interleukin-17/metabolism , Transcription Factors/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3 , Colon/metabolism , Colitis/chemically induced
3.
Metab Brain Dis ; 37(7): 2143-2161, 2022 10.
Article in English | MEDLINE | ID: mdl-35536461

ABSTRACT

Parkinson's disease (PD) patients not only show motor features such as bradykinesia, tremor, and rigidity but also non-motor features such as anxiety, depression, psychosis, memory loss, attention deficits, fatigue, sexual dysfunction, gastrointestinal issues, and pain. Many pharmacological treatments are available for PD patients; however, these treatments are partially or transiently effective since they only decrease the symptoms. As these therapies are unable to restore dopaminergic neurons and stop the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is required. The current review summarizes novel targets for PD, that can be utilized to identify disease-modifying treatments.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Tremor , Dopaminergic Neurons , Drug Discovery , Inflammation/drug therapy
4.
Inflammopharmacology ; 29(6): 1683-1699, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34792672

ABSTRACT

The ubiquitin-proteasome pathway is responsible for the turnover of different cellular proteins, such as transport proteins, presentation of antigens to the immune system, control of the cell cycle, and activities that promote cancer. The enzymes which remove ubiquitin, deubiquitylating enzymes (DUBs), play a critical role in central and peripheral immune tolerance to prevent the development of autoimmune diseases and thus present a potential therapeutic target for the treatment of autoimmune diseases. DUBs function by removing ubiquitin(s) from target protein and block ubiquitin chain elongation. The addition and removal of ubiquitin molecules have a significant impact on immune responses. DUBs and E3 ligases both specifically cleave target protein and modulate protein activity and expression. The balance between ubiquitylation and deubiquitylation modulates protein levels and also protein interactions. Dysregulation of the ubiquitin-proteasome pathway results in the development of various autoimmune diseases such as inflammatory bowel diseases (IBD), psoriasis, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This review summarizes the current understanding of ubiquitination in autoimmune diseases and focuses on various DUBs responsible for the progression of autoimmune diseases.


Subject(s)
Autoimmune Diseases/physiopathology , Deubiquitinating Enzymes/metabolism , Molecular Targeted Therapy , Animals , Autoimmune Diseases/enzymology , Autoimmune Diseases/therapy , Disease Progression , Humans , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...