Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev E ; 110(2-1): 024611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39294949

ABSTRACT

This study introduces a simulated active matter system, applying the pedestrian collision avoidance paradigm, which involves dynamically adjusting the desired velocity. We present a human-zombie game set within a closed geometry, combining predator-prey behavior with a one-way contagion process that transforms prey into predators. The system demonstrates varied responses in our implemented model: with agents having the same maximum speeds, a single zombie always captures a human, whereas two zombies never capture a single human agent. As the number of human agents increases, observables such as the final fraction of zombie agents and total conversion times exhibit significant changes in the system's behavior at intermediate density values. Most notably, there is evidence of a first-order phase transition when analyzing the mean population speed as an order parameter.


Subject(s)
Pedestrians , Humans , Game Theory , Computer Simulation , Predatory Behavior , Models, Biological
2.
Sci Rep ; 13(1): 9455, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301896

ABSTRACT

Lymphoid organs are unusual multicellular tissues: they are densely packed, but the lymphocytes trafficking through them are actively moving. We hypothesize that the intriguing ability of lymphocytes to avoid jamming and clogging is in part attributable to the dynamic shape changes that cells undergo when they move. In this work, we test this hypothesis by investigating an idealized system, namely, the flow of self-propelled, oscillating particles passing through a narrow constriction in two dimensions (2D), using numerical simulations. We found that deformation allows particles with these properties to flow through a narrow constriction in conditions when non-deformable particles would not be able to do so. Such a flowing state requires the amplitude and frequency of oscillations to exceed threshold values. Moreover, a resonance leading to the maximum flow rate was found when the oscillation frequency matched the natural frequency of the particle related to its elastic stiffness. To our knowledge, this phenomenon has not been described previously. Our findings could have important implications for understanding and controlling flow in a variety of systems in addition to lymphoid organs, such as granular flows subjected to vibration.


Subject(s)
Lymphocytes , Models, Biological , Vibration , Lymphocytes/cytology , Cell Shape
3.
Sci Rep ; 8(1): 9133, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29904139

ABSTRACT

We report extensive numerical simulations of the flow of anisotropic self-propelled particles through a constriction. In particular, we explore the role of the particles' desired orientation with respect to the moving direction on the system flowability. We observe that when particles propel along the direction of their long axis (longitudinal orientation) the flow-rate notably reduces compared with the case of propulsion along the short axis (transversal orientation). And this is so even when the effective section (measured as the number of particles that are necessary to span the whole outlet) is larger for the case of longitudinal propulsion. This counterintuitive result is explained in terms of the formation of clogging structures at the outlet, which are revealed to have higher stability when the particles align along the long axis. This generic result might be applied to many different systems flowing through bottlenecks such as microbial populations or different kind of cells. Indeed, it has already a straightforward connection with recent results of pedestrian (which self-propel transversally oriented) and mice or sheep (which self-propel longitudinally oriented).

4.
Phys Rev E ; 94(2-1): 022318, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627328

ABSTRACT

In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models.


Subject(s)
Accident Prevention , Movement/physiology , Pedestrians , Humans , Probability
5.
PLoS One ; 8(11): e81082, 2013.
Article in English | MEDLINE | ID: mdl-24312264

ABSTRACT

In the present work we investigate the egress times of a group of Argentine ants (Linepithema humile) stressed with different heating speeds. We found that the higher the temperature ramp is, the faster ants evacuate showing, in this sense, a group-efficient evacuation strategy. It is important to note that even when the life of ants was in danger, jamming and clogging was not observed near the exit, in accordance with other experiments reported in the literature using citronella as aversive stimuli. Because of this clear difference between ants and humans, we recommend the use of some other animal models for studying competitive egress dynamics as a more accurate approach to understanding competitive egress in human systems.


Subject(s)
Ants/physiology , Escape Reaction , Stress, Physiological , Temperature , Animals , Social Behavior
6.
Article in English | MEDLINE | ID: mdl-23410385

ABSTRACT

We propose and document the evidence for an analogy between the dynamics of granular counterflows in the presence of bottlenecks or restrictions and financial price formation processes. Using extensive simulations, we find that the counterflows of simulated pedestrians through a door display eight stylized facts observed in financial markets when the density around the door is compared with the logarithm of the price. Finding so many stylized facts is very rare indeed among all agent-based models of financial markets. The stylized properties are present when the agents in the pedestrian model are assumed to display a zero-intelligent behavior. If agents are given decision-making capacity and adapt to partially follow the majority, periods of herding behavior may additionally occur. This generates the very slow decay of the autocorrelation of absolute return due to an intermittent dynamics. Our findings suggest that the stylized facts in the fluctuations of the financial prices result from a competition of two groups with opposite interests in the presence of a constraint funneling the flow of transactions to a narrow band of prices with limited liquidity.


Subject(s)
Commerce , Decision Support Techniques , Game Theory , Models, Theoretical , Computer Simulation
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 2): 056117, 2011 May.
Article in English | MEDLINE | ID: mdl-21728615

ABSTRACT

An off-lattice automaton for modeling pedestrian dynamics is presented. Pedestrians are represented by disks with variable radius that evolve following predefined rules. The key feature of our approach is that although positions and velocities are continuous, forces do not need to be calculated. This has the advantage that it allows using a larger time step than in force-based models. The room evacuation problem and circular racetrack simulations quantitatively reproduce the available experimental data, both for the specific flow rate and for the fundamental diagram of pedestrian traffic with an outstanding performance. In this last case, the variation of two free parameters (r(min) and r(max)) of the model accounts for the great variety of experimental fundamental diagrams reported in the literature. Moreover, this variety can be interpreted in terms of these model parameters.


Subject(s)
Models, Theoretical , Motor Activity , Humans , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL