Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
J Stem Cells Regen Med ; 19(1): 3-13, 2023.
Article in English | MEDLINE | ID: mdl-37366409

ABSTRACT

Human pluripotent stem cells (hPSCs) are a promising source of somatic cells for clinical applications and disease modelling. However, during culture they accumulate genetic aberrations such as amplification of 20q11.21 which occurs in approximately 20% of extensively cultured hPSC lines and confers a BCL2L1-mediated survival advantage. During the production of the large number of cells required for transplantation and therapy these aberrations may become unavoidable which has important safety implications for therapies and may also impact upon disease modelling. Presently, these risks are poorly understood; whilst it is apparent that large-scale genetic aberrations can pose an oncogenic risk, the risks associated with smaller, more insidious changes have not been fully explored. In this report, the effects of engraftment of human embryonic stem cells (hESCs) and hESC-derived hepatocyte-like cells (HLCs) with and without amplification of the 20q11.21 minimal amplicon and isochromosome 20q (i20q) in SCID-beige mice are presented. The cells were tracked in vivo using a luminescent reporter over a period of approximately four months. Intrasplenic injection of hESCs showed greater engraftment potential and the formation of more severely disruptive lesions in the liver and spleen of animals injected with cells containing 20q11.21 compared with i20q and wild type. HLCs with 20q11.21 engrafted more successfully and formed more severely disruptive lesions than wild type cells or cells with i20q. These results reinforce the notion that karyotyping of therapeutic hPSC is required for transplant, and suggest that screening for known common aberrations is necessary. Further work to identify commonly arising genetic aberrations should be performed and routine screening for hPSCs intended for therapeutic use should be used.

2.
Arch Toxicol ; 95(11): 3475-3495, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34510227

ABSTRACT

microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems.


Subject(s)
Biomarkers, Pharmacological , MicroRNAs/blood , Drug-Related Side Effects and Adverse Reactions/diagnosis , Humans , MicroRNAs/analysis , Sensitivity and Specificity
3.
Toxicol Sci ; 183(1): 139-153, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34175955

ABSTRACT

Drug rash with eosinophilia with systemic symptoms (DRESS) is a serious adverse event associated with use of the glycopeptide antibiotic vancomycin. Vancomycin-induced drug rash with eosinophilia with systemic symptoms is associated with the expression of human leukocyte antigen (HLA)-A*32:01, suggesting that the drug interacts with this HLA to activate CD8+ T cells. The purpose of this study was to utilize peripheral blood mononuclear cell from healthy donors to: (1) investigate whether expression of HLA-A*32:01 is critical for the priming naïve of T cells with vancomycin and (2) generate T-cell clones (TCC) to determine whether vancomycin exclusively activates CD8+ T cells and to define cellular phenotype, pathways of drug presentation and cross-reactivity. Dendritic cells were cultured with naïve T cells and vancomycin for 2 weeks. On day 14, cells were restimulated with vancomycin and T-cell proliferation was assessed by [3H]-thymidine incorporation. Vancomycin-specific TCC were generated by serial dilution and repetitive mitogen stimulation. Naïve T cells from HLA-A*02:01 positive and negative donors were activated with vancomycin; however the strength of the induced response was significantly stronger in donors expressing HLA-A*32:01. Vancomycin-responsive CD4+ and CD8+ TCC from HLA-A*32:01+ donors expressed high levels of CXCR3 and CCR4, and secreted IFN-γ, IL-13, and cytolytic molecules. Activation of CD8+ TCC was HLA class I-restricted and dependent on a direct vancomycin HLA binding interaction with no requirement for processing. Several TCC displayed cross-reactivity with teicoplanin and daptomycin. To conclude, this study provides evidence that vancomycin primes naïve T cells from healthy donors expressing HLA-A*32:01 through a direct pharmacological binding interaction. Cross-reactivity of CD8+ TCC with teicoplanin provides an explanation for the teicoplanin reactions observed in vancomycin hypersensitive patients.


Subject(s)
Pharmaceutical Preparations , Vancomycin , CD8-Positive T-Lymphocytes , HLA-A Antigens , Humans , Interleukin-13 , Leukocytes, Mononuclear , Vancomycin/toxicity
4.
Hepatology ; 74(2): 973-986, 2021 08.
Article in English | MEDLINE | ID: mdl-33872408

ABSTRACT

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Subject(s)
Liver Regeneration/drug effects , Liver/drug effects , NF-E2-Related Factor 2/agonists , Oleanolic Acid/analogs & derivatives , Adult , Aged, 80 and over , Animals , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Hepatectomy , Hepatocytes , Humans , Liver/physiology , Liver/surgery , Liver Regeneration/genetics , Male , Mice , Mice, Knockout , Middle Aged , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oleanolic Acid/administration & dosage , Primary Cell Culture
5.
Sci Rep ; 11(1): 2932, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536534

ABSTRACT

Chronic lymphocytic leukaemia (CLL) exhibits variable clinical course and response to therapy, but the molecular basis of this variability remains incompletely understood. Data independent acquisition (DIA)-MS technologies, such as SWATH (Sequential Windowed Acquisition of all THeoretical fragments), provide an opportunity to study the pathophysiology of CLL at the proteome level. Here, a CLL-specific spectral library (7736 proteins) is described alongside an analysis of sample replication and data handling requirements for quantitative SWATH-MS analysis of clinical samples. The analysis was performed on 6 CLL samples, incorporating biological (IGHV mutational status), sample preparation and MS technical replicates. Quantitative information was obtained for 5169 proteins across 54 SWATH-MS acquisitions: the sources of variation and different computational approaches for batch correction were assessed. Functional enrichment analysis of proteins associated with IGHV mutational status showed significant overlap with previous studies based on gene expression profiling. Finally, an approach to perform statistical power analysis in proteomics studies was implemented. This study provides a valuable resource for researchers working on the proteomics of CLL. It also establishes a sound framework for the design of sufficiently powered clinical proteomics studies. Indeed, this study shows that it is possible to derive biologically plausible hypotheses from a relatively small dataset.


Subject(s)
Biological Variation, Population/genetics , Genetic Heterogeneity , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Proteomics/statistics & numerical data , Aged , Datasets as Topic , Female , Gene Expression Profiling , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Male , Middle Aged , Mutation , Proteome , Receptors, Antigen, B-Cell/genetics , Tandem Mass Spectrometry
7.
Toxicol In Vitro ; 72: 105096, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33460737

ABSTRACT

Inhibition of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzymatic step in de novo pyrimidine synthesis, has broad immunosuppressive effects in vivo and shows promise as a therapeutic target for the treatment of malignancies, viral infections and auto-immune diseases. Whilst there are numerous DHODH inhibitors under development, leflunomide and teriflunomide are the only FDA approved compounds on the market, each of which have been issued with black-box warnings for hepatotoxicity. Mitochondrial dysfunction is a putative mechanism by which teriflunomide and leflunomide elicit their hepatotoxic effects, however it is as yet unclear whether this is shared by other nascent DHODH inhibitors. The present study aimed to evaluate the propensity for DHODH inhibitors to mediate mitochondrial dysfunction in two hepatic in vitro models. Initial comparisons of cytotoxicity and ATP content in HepaRG® cells primed for oxidative metabolism, in tandem with mechanistic evaluations by extracellular flux analysis identified multifactorial toxicity and moderate indications of respiratory chain dysfunction or uncoupling. Further investigations using HepG2 cells, a hepatic line with limited capability for phase I xenobiotic metabolism, identified leflunomide and brequinar as positive mitochondrial toxicants. Taken together, biotransformation of some DHODH inhibitor species may play a role in mediating or masking hepatic mitochondrial liabilities.


Subject(s)
Antineoplastic Agents/toxicity , Immunosuppressive Agents/toxicity , Liver/drug effects , Mitochondria/drug effects , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Biphenyl Compounds/toxicity , Cell Line , Cell Respiration/drug effects , Crotonates/toxicity , Dicarboxylic Acids/toxicity , Dihydroorotate Dehydrogenase , Humans , Hydroxybutyrates/toxicity , Leflunomide/toxicity , Liver/metabolism , Mitochondria/metabolism , Models, Biological , Nitriles/toxicity , Salicylanilides/toxicity , Toluidines/toxicity , Triazoles/toxicity
8.
Br J Clin Pharmacol ; 87(6): 2572-2588, 2021 06.
Article in English | MEDLINE | ID: mdl-33217013

ABSTRACT

AIMS: Carbamazepine can cause hypersensitivity reactions in ~10% of patients. An immunogenic effect can be produced by the electrophilic 10,11-epoxide metabolite but not by carbamazepine. Hypothetically, certain single nucleotide polymorphisms might increase the formation of immunogenic metabolites, leading ultimately to hypersensitivity reactions. This study explores the role of clinical and genetic factors in the pharmacokinetics (PK) of carbamazepine and 3 metabolites known to be chemically reactive or formed through reactive intermediates. METHODS: A combination of rich and sparse PK samples were collected from healthy volunteers and epilepsy patients. All subjects were genotyped for 20 single nucleotide polymorphisms in 11 genes known to be involved in the metabolism or transport of carbamazepine and carbamazepine 10,11-epoxide. Nonlinear mixed effects modelling was used to build a population-PK model. RESULTS: In total, 248 observations were collected from 80 subjects. A 1-compartment PK model with first-order absorption and elimination best described the parent carbamazepine data, with a total clearance of 1.96 L/h, central distribution volume of 164 L and absorption rate constant of 0.45 h-1 . Total daily dose and coadministration of phenytoin were significant covariates for total clearance of carbamazepine. EPHX1-416G/G genotype was a significant covariate for the clearance of carbamazepine 10,11-epoxide. CONCLUSION: Our data indicate that carbamazepine clearance was affected by total dose and phenytoin coadministration, but not by genetic factors, while carbamazepine 10,11-epoxide clearance was affected by a variant in the microsomal epoxide hydrolase gene. A much larger sample size would be required to fully evaluate the role of genetic variation in carbamazepine pharmacokinetics, and thereby predisposition to carbamazepine hypersensitivity.


Subject(s)
Anticonvulsants , Carbamazepine , Epilepsy , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Carbamazepine/pharmacokinetics , Carbamazepine/therapeutic use , Epilepsy/drug therapy , Epilepsy/genetics , Epoxide Hydrolases/genetics , Humans , Phenytoin/therapeutic use
10.
Chem Res Toxicol ; 33(12): 2939-2943, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33169987

ABSTRACT

Flucloxacillin is a ß-lactam antibiotic associated with a high incidence of drug-induced liver reactions. Although expression of HLA-B*57:01 increases susceptibility, little is known about the pathological mechanisms involved in the induction of the clinical phenotype. Irreversible protein modification is suspected to drive the reaction through the presentation of flucloxacillin-modified peptides by the risk allele. In this study, the binding of flucloxacillin to proteins of liver-like cells was characterized. Flucloxacillin was shown to bind to proteins localized in bile canaliculi regions, coinciding with the site of clinical disease. The localization of flucloxacillin was mediated primarily by the membrane transporter multidrug resistance-associated protein 2. Modification of multiple proteins by flucloxacillin in bile canaliculi regions may provide a potential local source of neo-antigens for HLA presentation in the liver.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Membrane Transport Proteins/metabolism , Cell Line , Cell Membrane/metabolism , Floxacillin/chemistry , Humans , Molecular Structure
12.
J Immunol ; 205(9): 2375-2390, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32989092

ABSTRACT

Use of the atypical antipsychotic clozapine is associated with life-threatening agranulocytosis. The delayed onset and the association with HLA variants are characteristic of an immunological mechanism. The objective of this study was to generate clozapine-specific T cell clones (TCC) and characterize pathways of T cell activation and cross-reactivity with clozapine metabolites and olanzapine. TCC were established and characterized by culturing PBMCs from healthy donors and patients with a history of clozapine-induced agranulocytosis. Modeling was used to explore the drug-HLA binding interaction. Global TCC protein changes were profiled by mass spectrometry. Six well-growing clozapine-responsive CD4+ and CD8+ TCC were used for experiments; activation of TCC required APC, with clozapine interacting directly at therapeutic concentrations with several HLA-DR molecules. TCC were also activated with N-desmethylclozapine and olanzapine at supratherapeutic concentrations. Marked changes in TCC protein expression profiles were observed when clozapine treatment was compared with olanzapine and the medium control. Docking of the compounds into the HLA-DRB1*15:01 and HLA-DRB1*04:01 binding clefts revealed that clozapine and olanzapine bind in a similar conformation to the P4-P6 peptide binding pockets, whereas clozapine N-oxide, which did not activate the TCC, bound in a different conformation. TCC secreted Th1, Th2, and Th22 cytokines and effector molecules and expressed TCR Vß 5.1, 16, 20, and 22 as well as chemokine receptors CXCR3, CCR6, CCR4, and CCR9. Collectively, these data show that clozapine interacts at therapeutic concentrations with HLA-DR molecules and activates human CD4+ T cells. Olanzapine only activates TCC at supratherapeutic concentrations.


Subject(s)
Clozapine/immunology , T-Lymphocytes/immunology , Adult , Clone Cells/immunology , Clozapine/analogs & derivatives , Cross Reactions/immunology , Cytokines/immunology , Female , HLA-DR Antigens/immunology , Humans , Lymphocyte Activation/immunology , Male , Middle Aged
13.
J Med Chem ; 63(17): 9965-9976, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787104

ABSTRACT

Synthetic triterpenoids including CDDO, its methyl ester (CDDO-Me, bardoxolone methyl), and its imidazolide (CDDO-Im) enhance Nrf2-mediated antioxidant and anti-inflammatory activity in many diseases by reacting with thiols on the adaptor protein, Keap1. Unlike monofunctional CDDO-Me, the bifunctional analog, CDDO-Im, has a second reactive site (imidazolide) and can covalently bind to amino acids other than cysteine on target proteins such as glutathione S-transferase pi (GSTP), serum albumin, or Keap1. Here we show for the first time that bifunctional CDDO-Im (in contrast to CDDO-Me), as low as 50 nM, can covalently transacylate arginine and serine residues in GSTP and cross-link them to adjacent cysteine residues. Moreover, we show that CDDO-Im binds covalently to Keap1 by forming permanent Michael adducts with eight different cysteines, and acyl adducts with lysine and several tyrosine residues. Modeling studies suggest that the Tyr 85 adduct stabilizes the Keap1-Cul3 complex, thereby enhancing the potency of CDDO-Im.


Subject(s)
Imidazoles/chemistry , Kelch-Like ECH-Associated Protein 1/chemistry , Oleanolic Acid/analogs & derivatives , Amino Acid Sequence , Cullin Proteins/chemistry , Cullin Proteins/metabolism , Glutathione S-Transferase pi/chemistry , Glutathione S-Transferase pi/metabolism , Humans , Imidazoles/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Docking Simulation , Oleanolic Acid/chemistry , Oleanolic Acid/metabolism , Protein Multimerization/drug effects , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism
14.
Toxicol Sci ; 178(1): 115-126, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32777075

ABSTRACT

Amoxicillin-clavulanate is the most common cause of idiosyncratic drug-induced liver injury (DILI). Drug-specific CD4+ T cells have been detected in patients with DILI, suggestive of an immune etiology. Furthermore, genetic associations including the human leucocyte antigen (HLA) DRB1*15:01-DQB1*06:02 haplotype influence susceptibility. Amoxicillin forms protein adducts that are postulated to activate T cells, by conjugating with lysine residues. However, a role for such adducts has not been described. This study aimed to (1) investigate whether amoxicillin-modified HLA-DRB1*15:01-DQB1*06:02 binding peptides selectively activate DILI patient T cells and (2) define the nature of the T-cell response with respective to antigen structure. Peptides carrying lysine residues for amoxicillin binding in positions (KP) 2-6 and anchors for the HLA-DRB1*15:01-DQB1*06:02 haplotype were designed. The amoxicillin-modified peptides were characterized by mass spectrometry prior to culturing with patient peripheral blood mononuclear cell. T-cell clones were then tested for specificity with amoxicillin, unmodified- and amoxicillin-modified peptides, and structural variants. Amoxicillin-modified KP-2 and KP-3 peptide-specific CD4+ clones proliferated and secreted interferon gamma (IFN-γ), interleukin (IL)-10, perforin and/or IL-17/IL-22 in a dose-dependent manner and displayed no cross-reactivity with amoxicillin, unmodified peptide or with positional derivatives. The T cells response was HLA class II restricted and the amoxicillin-modified peptides bound selectively to HLA-DRB1*15:01 and/or DQB1*06:02. To conclude, we show that amoxicillin-modified peptides bind to both components of the risk haplotype to stimulate DILI patient T cells and describe the importance of the position of nucleophilic lysine residue in the HLA binding peptide sequence.


Subject(s)
Amoxicillin , CD4-Positive T-Lymphocytes/drug effects , HLA-DRB1 Chains , Alleles , Cells, Cultured , Humans , Leukocytes, Mononuclear/immunology , Peptides
15.
Toxicol Appl Pharmacol ; 403: 115163, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32730777

ABSTRACT

During its clinical development fialuridine caused liver toxicity and the death of five patients. This case remains relevant due to the continued development of mechanistically-related compounds against a back-drop of simple in vitro models which remain limited for the preclinical detection of such delayed toxicity. Here, proteomic investigation of a differentiated, HepaRG, and proliferating, HepG2 cell model was utilised to confirm the presence of the hENT1 transporter, thymidine kinase-1 and -2 (TK1, TK2) and thymidylate kinase, all essential in order to reproduce the cellular activation and disposition of fialuridine in the clinic. Acute metabolic modification assays could only identify mitochondrial toxicity in HepaRG cells following extended dosing, 2 weeks. Toxic effects were observed around 10 µM, which is within a range of 10-15 X approximate Cmax. HepaRG cell death was accompanied by a significant decrease in mitochondrial DNA content, indicative of inhibition of mitochondrial replication, and a subsequent reduction in mitochondrial respiration and the activity of mitochondrial respiratory complexes, not replicated in HepG2 cells. The structural epimer of fialuridine, included as a pharmacological negative control, was shown to have no cytotoxic effects in HepaRG cells up to 4 weeks. Overall, these comparative studies demonstrate the HepaRG model has translational relevance for fialuridine toxicity and therefore may have potential in investigating the inhibition of mitochondrial replication over prolonged exposure for other toxicants.


Subject(s)
Antiviral Agents/pharmacology , Arabinofuranosyluracil/analogs & derivatives , Hepatocytes/drug effects , Mitochondria/drug effects , Arabinofuranosyluracil/pharmacology , Cell Line, Tumor , DNA Replication/drug effects , DNA, Mitochondrial/physiology , Dose-Response Relationship, Drug , Humans , Mitochondria/physiology
16.
Br J Pharmacol ; 177(19): 4353-4374, 2020 10.
Article in English | MEDLINE | ID: mdl-32681537

ABSTRACT

Intense efforts are underway to evaluate potential therapeutic agents for the treatment of COVID-19. In order to respond quickly to the crisis, the repurposing of existing drugs is the primary pharmacological strategy. Despite the urgent clinical need for these therapies, it is imperative to consider potential safety issues. This is important due to the harm-benefit ratios that may be encountered when treating COVID-19, which can depend on the stage of the disease, when therapy is administered and underlying clinical factors in individual patients. Treatments are currently being trialled for a range of scenarios from prophylaxis (where benefit must greatly exceed risk) to severe life-threatening disease (where a degree of potential risk may be tolerated if it is exceeded by the potential benefit). In this perspective, we have reviewed some of the most widely researched repurposed agents in order to identify potential safety considerations using existing information in the context of COVID-19.


Subject(s)
Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning , Humans , Pandemics , Risk Assessment , Safety
17.
J Hepatol ; 73(2): 349-360, 2020 08.
Article in English | MEDLINE | ID: mdl-32169610

ABSTRACT

BACKGROUND & AIM: Following acetaminophen (APAP) overdose, acute liver injury (ALI) can occur in patients that present too late for N-acetylcysteine treatment, potentially leading to acute liver failure, systemic inflammation, and death. Macrophages influence the progression and resolution of ALI due to their innate immunological function and paracrine activity. Syngeneic primary bone marrow-derived macrophages (BMDMs) were tested as a cell-based therapy in a mouse model of APAP-induced ALI (APAP-ALI). METHODS: Several phenotypically distinct BMDM populations were delivered intravenously to APAP-ALI mice when hepatic necrosis was established, and then evaluated based on their effects on injury, inflammation, immunity, and regeneration. In vivo phagocytosis assays were used to interrogate the phenotype and function of alternatively activated BMDMs (AAMs) post-injection. Finally, primary human AAMs sourced from healthy volunteers were evaluated in immunocompetent APAP-ALI mice. RESULTS: BMDMs rapidly localised to the liver and spleen within 4 h of administration. Injection of AAMs specifically reduced hepatocellular necrosis, HMGB1 translocation, and infiltrating neutrophils following APAP-ALI. AAM delivery also stimulated proliferation in hepatocytes and endothelium, and reduced levels of several circulating proinflammatory cytokines within 24 h. AAMs displayed a high phagocytic activity both in vitro and in injured liver tissue post-injection. Crosstalk with the host innate immune system was demonstrated by reduced infiltrating host Ly6Chi macrophages in AAM-treated mice. Importantly, therapeutic efficacy was partially recapitulated using clinical-grade primary human AAMs in immunocompetent APAP-ALI mice, underscoring the translational potential of these findings. CONCLUSION: We identify that AAMs have value as a cell-based therapy in an experimental model of APAP-ALI. Human AAMs warrant further evaluation as a potential cell-based therapy for APAP overdose patients with established liver injury. LAY SUMMARY: After an overdose of acetaminophen (paracetamol), some patients present to hospital too late for the current antidote (N-acetylcysteine) to be effective. We tested whether macrophages, an injury-responsive leukocyte that can scavenge dead/dying cells, could serve as a cell-based therapy in an experimental model of acetaminophen overdose. Injection of alternatively activated macrophages rapidly reduced liver injury and reduced several mediators of inflammation. Macrophages show promise to serve as a potential cell-based therapy for acute liver injury.


Subject(s)
Acetaminophen/poisoning , Cell- and Tissue-Based Therapy/methods , Chemical and Drug Induced Liver Injury , Macrophages , Paracrine Communication/immunology , Animals , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cytokines/blood , Disease Models, Animal , Humans , Immunity, Innate , Intercellular Signaling Peptides and Proteins , Liver Regeneration/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Phagocytosis , Treatment Outcome
18.
Mol Med ; 26(1): 13, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32000658

ABSTRACT

The Editors-in-Chief would like to alert readers that this article [1] is part of an investigation being conducted by the journal following the conclusions of an institutional enquiry at the University of Liverpool with respect to the quantitative mass spectrometry-generated results regarding acetylated and redox-modified HMGB1.

19.
Nat Rev Drug Discov ; 19(2): 131-148, 2020 02.
Article in English | MEDLINE | ID: mdl-31748707

ABSTRACT

Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI.


Subject(s)
Chemical and Drug Induced Liver Injury/diagnosis , Disease Models, Animal , Drug-Related Side Effects and Adverse Reactions/prevention & control , Animals , Chemical and Drug Induced Liver Injury/etiology , Humans , Predictive Value of Tests
20.
Chem Res Toxicol ; 33(1): 61-76, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31682113

ABSTRACT

Idiosyncratic drug-induced liver injury (iDILI), which is rare and often recognized only late in drug development, poses a major public health concern and impediment to drug development due to its high rate of morbidity and mortality. The mechanisms of DILI are not completely understood; both non-immune- and immune-mediated mechanisms have been proposed. Non-immune-mediated mechanisms including direct damage to hepatocytes, mitochondrial toxicity, interference with transporters, and alteration of bile ducts are well-known to be associated with drugs such as acetaminophen and diclofenac; whereas immune-mediated mechanisms involving activation of both adaptive and innate immune cells and the interactions of these cells with parenchymal cells have been proposed. The chemical signals involved in activation of both innate and adaptive immune responses are discussed with respect to recent scientific advances. In addition, the immunological signals including cytokine and chemokines that are involved in promoting liver injury are also reviewed. Finally, we discuss how liver tolerance and regeneration can have profound impact on the pathogenesis of iDILI. Continuous research in developing in vitro systems incorporating immune cells with liver cells and animal models with impaired liver tolerance will provide an opportunity for improved prediction and prevention of immune-mediated iDILI.


Subject(s)
Chemical and Drug Induced Liver Injury/immunology , Animals , Humans , Immune Tolerance , Liver/immunology , Signal Transduction , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...