Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Theranostics ; 12(13): 5856-5876, 2022.
Article in English | MEDLINE | ID: mdl-35966584

ABSTRACT

Preconditioning nerve injury enhances axonal regeneration of dorsal root ganglia (DRG) neurons in part by driving pro-regenerative perineuronal macrophage activation. How these macrophages influence the neuronal capacity of axon regeneration remains elusive. We report that oncomodulin (ONCM) is produced from the regeneration-associated macrophages and strongly influences regeneration of DRG sensory axons. We also attempted to promote sensory axon regeneration by nanogel-mediated delivery of ONCM to DRGs. Methods:In vitro neuron-macrophage interaction model and preconditioning sciatic nerve injury were used to verify the necessity of ONCM in preconditioning injury-induced neurite outgrowth. We developed a nanogel-mediated delivery system in which electrostatic encapsulation of ONCM by a reducible epsilon-poly(L-lysine)-nanogel (REPL-NG) enabled a controlled release of ONCM. Results: Sciatic nerve injury upregulated ONCM in DRG macrophages. ONCM in macrophages was necessary to produce pro-regenerative macrophages in the in vitro model of neuron-macrophage interaction and played an essential role in preconditioning-induced neurite outgrowth. ONCM increased neurite outgrowth in cultured DRG neurons by activating a distinct gene set, particularly neuropeptide-related genes. Increasing extracellularly secreted ONCM in DRGs sufficiently enhanced the capacity of neurite outgrowth. Intraganglionic injection of REPL-NG/ONCM complex allowed sustained ONCM activity in DRG tissue and achieved a remarkable long-range regeneration of dorsal column sensory axons beyond spinal cord lesion. Conclusion: NG-mediated ONCM delivery could be exploited as a therapeutic strategy for promoting sensory axon regeneration following spinal cord injury.


Subject(s)
Axons , Peripheral Nerve Injuries , Axons/physiology , Calcium-Binding Proteins , Humans , Macrophages/physiology , Nanogels , Nerve Regeneration/physiology , Peripheral Nerve Injuries/pathology , Spinal Cord
2.
Biomaterials ; 284: 121526, 2022 05.
Article in English | MEDLINE | ID: mdl-35461098

ABSTRACT

Traumatic damage to the spinal cord does not spontaneously heal, often leading to permanent tissue defects. We have shown that injection of imidazole-poly(organophosphazene) hydrogel (I-5) bridges cystic cavities with the newly assembled fibronectin-rich extracellular matrix (ECM). The hydrogel-created ECM contains chondroitin sulfate proteoglycans (CSPGs), collagenous fibrils together with perivascular fibroblasts, and various fibrotic proteins, all of which could hinder axonal growth in the matrix. In an in vitro fibrotic scar model, fibroblasts exhibited enhanced sensitivity to TGF-ß1 when grown on CSPGs. To alleviate the fibrotic microenvironment, the I-5 hydrogel was equipped with an additional function by making a complex with ARSB, a human enzyme degrading CSPGs, via hydrophobic interaction. Delivery of the I-5/ARSB complex significantly diminished the fibrotic ECM components. The complex promoted serotonergic axonal growth into the hydrogel-induced matrix and enhanced serotonergic innervation of the lumbar motor neurons. Regeneration of the propriospinal axons deep into the matrix and to the lumbar spinal cord was robustly increased accompanied by improved locomotor recovery. Therefore, our dual-functional system upgraded the functionality of the hydrogel for spinal cord regeneration by creating ECM to bridge tissue defects and concurrently facilitating axonal connections through the newly assembled ECM.


Subject(s)
N-Acetylgalactosamine-4-Sulfatase , Spinal Cord Injuries , Spinal Cord Regeneration , Animals , Axons/metabolism , Chondroitin Sulfate Proteoglycans/metabolism , Delayed-Action Preparations/metabolism , Humans , Hydrogels/chemistry , N-Acetylgalactosamine-4-Sulfatase/metabolism , N-Acetylgalactosamine-4-Sulfatase/therapeutic use , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Spinal Cord
3.
Exp Neurobiol ; 27(6): 489-507, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30636901

ABSTRACT

Survival and migration of transplanted neural stem cells (NSCs) are prerequisites for therapeutic benefits in spinal cord injury. We have shown that survival of NSC grafts declines after transplantation into the injured spinal cord, and that combining treadmill training (TMT) enhances NSC survival via insulin-like growth factor-1 (IGF-1). Here, we aimed to obtain genetic evidence that IGF-1 signaling in the transplanted NSCs determines the beneficial effects of TMT. We transplanted NSCs heterozygous (+/-) for Igf1r, the gene encoding IGF-1 receptor, into the mouse spinal cord after injury, with or without combining TMT. We analyzed the influence of genotype and TMT on locomotor recovery and survival and migration of NSC grafts. In vitro experiments were performed to examine the potential roles of IGF-1 signaling in the migratory ability of NSCs. Mice receiving +/- NSC grafts showed impaired locomotor recovery compared with those receiving wild-type (+/+) NSCs. Locomotor improvement by TMT was more pronounced with +/+ grafts. Deficiency of one allele of Igf1r significantly reduced survival and migration of the transplanted NSCs. Although TMT did not significantly influence NSC survival, it substantially enhanced the extent of migration for only +/+ NSCs. Cultured neurospheres exhibited dynamic motility with cytoplasmic protrusions, which was regulated by IGF-1 signaling. IGF-1 signaling in transplanted NSCs may be essential in regulating their survival and migration. Furthermore, TMT may promote NSC graft-mediated locomotor recovery via activation of IGF-1 signaling in transplanted NSCs. Dynamic NSC motility via IGF-1 signaling may be the cellular basis for the TMT-induced enhancement of migration.

4.
Nat Commun ; 8(1): 533, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912446

ABSTRACT

The cystic cavity that develops following injuries to brain or spinal cord is a major obstacle for tissue repair in central nervous system (CNS). Here we report that injection of imidazole-poly(organophosphazenes) (I-5), a hydrogel with thermosensitive sol-gel transition behavior, almost completely eliminates cystic cavities in a clinically relevant rat spinal cord injury model. Cystic cavities are bridged by fibronectin-rich extracellular matrix. The fibrotic extracellular matrix remodeling is mediated by matrix metalloproteinase-9 expressed in macrophages within the fibrotic extracellular matrix. A poly(organophosphazenes) hydrogel lacking the imidazole moiety, which physically interacts with macrophages via histamine receptors, exhibits substantially diminished bridging effects. I-5 injection improves coordinated locomotion, and this functional recovery is accompanied by preservation of myelinated white matter and motor neurons and an increase in axonal reinnervation of the lumbar motor neurons. Our study demonstrates that dynamic interactions between inflammatory cells and injectable biomaterials can induce beneficial extracellular matrix remodeling to stimulate tissue repair following CNS injuries.The cystic cavity that develops following injuries to brain or spinal cord is a major obstacle. Here the authors show an injection of imidazole poly(organophosphazenes), a hydrogel with thermosensitive sol-gel transition behavior, almost completely eliminates cystic cavities in a clinically relevant rat spinal cord injury model.


Subject(s)
Extracellular Matrix/physiology , Hydrogels/administration & dosage , Regeneration/physiology , Spinal Cord Injuries/therapy , Animals , Female , Fibronectins/metabolism , Hydrogels/chemistry , Imidazoles/chemical synthesis , Imidazoles/chemistry , Macrophages/physiology , Matrix Metalloproteinase 9/genetics , Mice , NIH 3T3 Cells , Polymers/chemical synthesis , Polymers/chemistry , Rats, Sprague-Dawley , Spinal Cord/physiology , Spinal Cord Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...