Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 9(49): eadj1511, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064564

ABSTRACT

Refractory high-entropy alloys (RHEAs) are emerging materials with potential for use under extreme conditions. As a newly developed material system, a comprehensive understanding of their long-term stability under potential service temperatures remains to be established. This study examined a titanium-vanadium-niobium-tantalum alloy, a promising RHEA known for its superior high-temperature strength and room-temperature ductility. Using a combination of advanced analytical microscopies, Calculation of Phase Diagrams (CALPHAD) software, and nanoindentation, we investigated the evolution of its microstructure and mechanical properties upon aging at 700°C. Trace interstitials such as oxygen and nitrogen, initially contributing to solid solution strengthening, promote phase segregation during thermal aging. As a result of the depletion of solute interstitials within the metal matrix, a progressive softening is observed in the alloy as a function of aging time. This study, therefore, underscores the need for a better control of impurities in future development and application of RHEAs.

3.
Sci Rep ; 9(1): 18993, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31831873

ABSTRACT

The corrosion behavior of the FCC Cr18Mn27Fe27.5Ni27.5 high entropy alloy (HEA) after exposure to molten FLiBe salt at 700 °C for 1000 hours, has been investigated. Results show that the HEA lost a higher mass compared to the reference 316 H stainless steel due to the dissolution of Mn into the molten salt. The loss of Mn from the alloy appeared to discourage the dissolution of Cr in the molten fluoride salts which is widely recognized as the mechanism of corrosion degradation. Thermal exposure at 700 °C for 1000 hours also led to the precipitation of an additional BCC phase Cr67Fe13Mn18.5Ni1.5, which was confirmed by CALPHAD predictions.

SELECTION OF CITATIONS
SEARCH DETAIL