Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 18(24): e202300496, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37806962

ABSTRACT

Due to the global rise in the number of antibiotic resistant bacterial infections over the past 20 years, there is a dire need for the development of small molecule antibiotics capable of overcoming resistance mechanisms in pathogenic bacteria. Antibiotic development against Gram-negative pathogens, such as Pseudomonas aeruginosa, is especially challenging due to their additional outer membrane which reduces antibiotic entry. Recently, it has been shown that a broad range of nitrogen functionality, including guanidines, amidines, primary amines, imidazolines, and imidazoles, promote antibiotic and adjuvant activity in Gram-negative bacteria, but few of these have been targeted towards Pseudomonas aeruginosa specifically despite this pathogen being deemed a critical threat by the United States Centers for Disease Control and Prevention. Herein, we examined a small series of known and unknown nitrogenous dimers, with guanidine, amidine, dimethyl amine, and pyridine functionality, for antibacterial activity against multidrug resistant Pseudomonas aeruginosa. We found that two, with bisbenzguanidine and bisbenzamidine functionality, are potent against clinical isolates of multidrug resistant and biofilm forming Pseudomonas aeruginosa.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa , Microbial Sensitivity Tests , Gram-Negative Bacteria , Drug Resistance, Multiple, Bacterial , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology
2.
ACS Omega ; 7(32): 28434-28444, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990476

ABSTRACT

New antibiotics with unique biological targets are desperately needed to combat the growing number of resistant bacterial pathogens. ATP synthase, a critical protein found in all life, has recently become a target of interest for antibiotic development due to the success of the anti-tuberculosis drug bedaquiline, and while many groups have worked on developing drugs to target bacterial ATP synthase, few have been successful at inhibiting Pseudomonas aeruginosa (PA) ATP synthase specifically. PA is one of the leading causes of resistant nosocomial infections across the world and is extremely challenging to treat due to its various antibiotic resistance mechanisms for most commonly used antibiotics. Herein, we detail the synthesis and evaluation of a series of C1/C2 quinoline analogues for their ability to inhibit PA ATP synthase and act as antibiotics against wild-type PA. From this survey, we found six compounds capable of inhibiting PA ATP synthase in vitro showing that bulky/hydrophobic C1/C2 substitutions are preferred. The strongest inhibitor showed an IC50 of 10 µg/mL and decreased activity of PA ATP synthase to 24% relative to the control. While none of the compounds were able to inhibit wild-type PA in cell culture, two showed improved inhibition of PA growth when permeability of the outer membrane was increased or efflux was knocked out, thus demonstrating that these compounds could be further developed into efficacious antibiotics.

SELECTION OF CITATIONS
SEARCH DETAIL
...