Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 462, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013427

ABSTRACT

Although certain individuals with HIV infection can stop antiretroviral therapy (ART) without viral load rebound, the mechanisms under-pinning 'post-treatment control' remain unclear. Using RNA-Seq we explored CD4 T cell gene expression to identify evidence of a mechanism that might underpin virological rebound and lead to discovery of associated biomarkers. Fourteen female participants who received 12 months of ART starting from primary HIV infection were sampled at the time of stopping therapy. Two analysis methods (Differential Gene Expression with Gene Set Enrichment Analysis, and Weighted Gene Co-expression Network Analysis) were employed to interrogate CD4+ T cell gene expression data and study pathways enriched in post-treatment controllers versus early rebounders. Using independent analysis tools, expression of genes associated with type I interferon responses were associated with a delayed time to viral rebound following treatment interruption (TI). Expression of four genes identified by Cox-Lasso (ISG15, XAF1, TRIM25 and USP18) was converted to a Risk Score, which associated with rebound (p < 0.01). These data link transcriptomic signatures associated with innate immunity with control following stopping ART. The results from this small sample need to be confirmed in larger trials, but could help define strategies for new therapies and identify new biomarkers for remission.


Subject(s)
Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/metabolism , HIV Infections/drug therapy , HIV Infections/genetics , HIV-1/drug effects , HIV-1/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cytokines/genetics , Cytokines/metabolism , Female , HIV Infections/metabolism , HIV Infections/virology , HIV-1/genetics , Humans , Male , Transcription Factors/genetics , Transcription Factors/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism , Withholding Treatment
2.
Phys Chem Chem Phys ; 17(24): 15615-28, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-25989828

ABSTRACT

Multivalent interactions between deformable mesoscopic units are ubiquitous in biology, where membrane macromolecules mediate the interactions between neighbouring living cells and between cells and solid substrates. Lately, analogous artificial materials have been synthesised by functionalising the outer surface of compliant Brownian units, for example emulsion droplets and lipid vesicles, with selective linkers, in particular short DNA sequences. This development extended the range of applicability of DNA as a selective glue, originally applied to solid nano and colloidal particles. On very deformable lipid vesicles, the coupling between statistical effects of multivalent interactions and mechanical deformation of the membranes gives rise to complex emergent behaviours, as we recently contributed to demonstrate [Parolini et al., Nat. Commun., 2015, 6, 5948]. Several aspects of the complex phenomenology observed in these systems still lack a quantitative experimental characterisation and a fundamental understanding. Here we focus on the DNA-mediated multivalent interactions of a single liposome adhering to a flat supported bilayer. This simplified geometry enables the estimate of the membrane tension induced by the DNA-mediated adhesive forces acting on the liposome. Our experimental investigation is completed by morphological measurements and the characterisation of the DNA-melting transition, probed by in situ Förster Resonant Energy Transfer spectroscopy. Experimental results are compared with the predictions of an analytical theory that couples the deformation of the vesicle to a full description of the statistical mechanics of mobile linkers. With at most one fitting parameter, our theory is capable of semi-quantitatively matching experimental data, confirming the quality of the underlying assumptions.


Subject(s)
DNA/chemistry , Lipid Bilayers/chemistry , Lasers , Microscopy, Confocal , Phosphatidylcholines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL