Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Tech ; 38(1): 225-237, 2019 May.
Article in English | MEDLINE | ID: mdl-31564728

ABSTRACT

In 2016-2017, the H5N8 strain of highly pathogenic avian influenza (HPAI) spread worldwide and Uganda reported the first occurrence of the disease in its poultry and wild birds. Genetic analysis revealed that the virus clusters with 2.3.4.4 group B strains from birds in central and southern Asia, and thus forms part of the 2.3.4.4 group B clade. Since Uganda is in the path of two major migratory bird flyways, it is likely that infected migratory wild birds played a crucial role in the introduction of H5N8 HPAI viruses into Uganda. The outbreaks happened in the districts of Wakiso, Masaka and Kalangala and affected domestic and wild birds. A One Health Multisectoral Coordination Committee, consisting of a National Task Force, Technical Working Groups and District Disaster Management Committees, was immediately activated to coordinate the preparedness and response efforts to control the disease. In all the affected districts, surveillance was intensified on both domestic and wild birds; biosecurity measures were increased; and movement controls, culling, cleaning, disinfection and safe disposal of carcasses were implemented. Awareness of the disease was raised through education materials, leaflets and brochures distributed to farmers. Finally, Uganda successfully controlled the H5N8 outbreak, using its national preparedness and response mechanisms and through collaboration with international partners. The emergence and spread of this virus strain in Uganda and other parts of Africa poses a significant threat to the poultry industry and food security.


En 2016­2017, le sous-type H5N8 du virus de l'influenza aviaire hautement pathogène (IAHP) s'est propagé dans le monde entier. En Ouganda, les premiers cas ont été notifiés chez les volailles et dans l'avifaune. Une analyse génétique a montré que le virus causal était relié aux souches 2.3.4.4 de groupe B trouvées chez des oiseaux d'Asie centrale et du Sud et qu'il appartenait donc au clade 2.3.4.4 des virus du groupe B. L'Ouganda se trouvant sur le tracé de deux voies majeures de migration d'oiseaux, les espèces sauvages d'oiseaux migrateurs ont probablement joué un rôle déterminant dans l'introduction des virus H5N8 de l'IAHP en Ouganda. Les foyers se sont déclarés dans les districts de Wakiso, Masaka et Kalangala, affectant des espèces aviaires domestiques et sauvages. Un Comité de coordination multisectoriel Une seule santé a aussitôt été créé, composé d'un groupe de travail national, de plusieurs groupes techniques d'experts et de comités locaux de gestion des urgences, afin d'assurer la coordination des activités de préparation et de réponse pour lutter contre la maladie. La surveillance des oiseaux domestiques et de l'avifaune a été intensifiée dans tous les districts affectés ; les mesures de biosécurité ont été renforcées ; les mouvements d'animaux ont été soumis à un contrôle ; enfin, des mesures d'abattage, de nettoyage/désinfection et d'élimination sécurisée des cadavres ont été introduites. Une campagne de sensibilisation à la maladie a été organisée avec la distribution aux éleveurs de matériels pédagogiques, dépliants et brochures d'information. L'Ouganda a finalement réussi à contrôler ce foyer dû au virus H5N8 en appliquant les mécanismes nationaux de préparation et de réponse, avec la collaboration de ses partenaires internationaux. L'émergence et la propagation de cette souche virale en Ouganda et dans d'autres régions d'Afrique font peser une lourde menace sur le secteur des productions avicoles ainsi que sur la sécurité alimentaire.


En los años 2016 y 2017 la cepa H5N8 del virus de la influenza aviar altamente patógena (IAAP) se diseminó por el mundo entero y Uganda notificó su primera aparición en las poblaciones de aves salvajes y de corral del país. El análisis genético reveló que el virus se agrupa con cepas 2.3.4.4 del grupo B que se encuentran en aves de Asia central y meridional, de donde se sigue que forma parte del clado 2.3.4.4 del grupo B. Toda vez que por el territorio ugandés pasan dos grandes rutas migratorias, es probable que, en el curso de sus migraciones, ciertas aves salvajes infectadas hayan tenido un papel decisivo en la introducción en el país del virus H5N8 de la IAAP. Los brotes tuvieron lugar en los distritos de Wakiso, Masaka y Kalangala y afectaron a aves tanto domésticas como salvajes. Inmediatamente se activó un comité de coordinación multisectorial de Una sola salud, formado por un grupo de trabajo nacional más una serie de grupos de trabajos técnicos y de comités de distrito de «gestión de catástrofes¼, que tenía por cometido coordinar las actividades de preparación y respuesta para combatir la enfermedad. En todos los distritos afectados se intensificó la vigilancia de las aves domésticas y salvajes, se reforzaron las medidas de seguridad biológica y se instituyeron medidas de control de los movimientos, sacrificio sanitario, limpieza, desinfección y eliminación segura de los animales muertos. También se repartieron entre los productores material pedagógico, prospectos y folletos con el objetivo de dar mejor a conocer la enfermedad. A la postre Uganda, gracias a sus mecanismos nacionales de preparación y respuesta, aunados a la colaboración con contrapartes internacionales, logró controlar el brote causado por el virus H5N8. La aparición y propagación de esta cepa vírica en Uganda y otras partes de África supone una importante amenaza para el sector avícola y la seguridad alimentaria.


Subject(s)
Animals, Wild , Disease Outbreaks , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animal Migration , Animals , Asia , Birds , Disease Outbreaks/prevention & control , Humans , Influenza in Birds/prevention & control , Uganda
2.
Zoonoses Public Health ; 61(1): 4-17, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23556412

ABSTRACT

Pigs and humans have shared influenza A viruses (IAV) since at least 1918, and many interspecies transmission events have been documented since that time. However, despite this interplay, relatively little is known regarding IAV circulating in swine around the world compared with the avian and human knowledge base. This gap in knowledge impedes our understanding of how viruses adapted to swine or man impacts the ecology and evolution of IAV as a whole and the true impact of swine IAV on human health. The pandemic H1N1 that emerged in 2009 underscored the need for greater surveillance and sharing of data on IAV in swine. In this paper, we review the current state of IAV in swine around the world, highlight the collaboration between international organizations and a network of laboratories engaged in human and animal IAV surveillance and research, and emphasize the need to increase information in high-priority regions. The need for global integration and rapid sharing of data and resources to fight IAV in swine and other animal species is apparent, but this effort requires grassroots support from governments, practicing veterinarians and the swine industry and, ultimately, requires significant increases in funding and infrastructure.


Subject(s)
Endemic Diseases , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A virus/isolation & purification , Influenza, Human/epidemiology , Orthomyxoviridae Infections/veterinary , Swine Diseases/epidemiology , Animals , Biomedical Research , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza A virus/physiology , Influenza, Human/transmission , International Cooperation , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/transmission , Public Health , Public Health Surveillance , Swine , Swine Diseases/transmission , Swine Diseases/virology , Zoonoses
3.
Rev Sci Tech ; 30(3): 661-71, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22435180

ABSTRACT

High-pathogenicity avian influenza (HPAI) and low-pathogenicity notifiable avian influenza (LPNAI) in poultry are notifiable diseases that must be reported to the World Organisation for Animal Health (OIE). There are variations between countries' responses to avian influenza (AI) outbreak situations based on their economic status, diagnostic capacity and other factors. The objective of this study was to ascertain the significant association between HPAI control data and a country's poultry density, the performance of its Veterinary Services, and its economic indicators (gross domestic product, agricultural gross domestic product, gross national income, human development index and Organisation for Economic Co-operation and Development [OECD] status). Results indicate that as poultry density increases for least developed countries there is an increase in the number and duration of HPAI outbreaks and in the time it takes to eradicate the disease. There was no significant correlation between HPAI control and any of the economic indicators except membership of the OECD. Member Countries, i.e. those with high-income economies, transparency and good governance, had shorter and significantly fewer HPAI outbreaks, quicker eradication times, lower mortality rates and higher culling rates than non-OECD countries. Furthermore, countries that had effective and efficient Veterinary Services (as measured by the ratings they achieved when they were assessed using the OIE Tool for the Evaluation of Performance of Veterinary Services) had better HPAI control measures.


Subject(s)
Disease Outbreaks/veterinary , Influenza in Birds/prevention & control , Poultry Diseases/prevention & control , Veterinary Medicine/standards , Animals , Developed Countries/economics , Developed Countries/statistics & numerical data , Developing Countries/economics , Developing Countries/statistics & numerical data , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , Global Health , Humans , Influenza in Birds/economics , Influenza in Birds/epidemiology , Poultry , Poultry Diseases/economics , Poultry Diseases/epidemiology , Workforce
4.
Rev Sci Tech ; 30(3): 839-70, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22435196

ABSTRACT

Twenty-nine distinct epizootics of high-pathogenicity avian influenza (HPAI) have occurred since 1959. The H5N1 HPAI panzootic affecting Asia, Africa and Eastern Europe has been the largest among these, affecting poultry and/or wild birds in 63 countries. A stamping-out programme achieved eradication in 24 of these epizootics (and is close to achieving eradication in the current H5N2 epizootic in South African ostriches), but vaccination was added to the control programmes in four epizootics when stamping out alone was not effective. During the 2002 to 2010 period, more than 113 billion doses of avian influenza (AI) vaccine were used in at-risk national poultry populations of over 131 billion birds. At two to three doses per bird for the 15 vaccinating countries, the average national vaccination coverage rate was 41.9% and the global AI vaccine coverage rate was 10.9% for all poultry. The highest national coverage rate was nearly 100% for poultry in Hong Kong and the lowest national coverage was less than 0.01% for poultry in Israel and The Netherlands. Inactivated AI vaccines accounted for 95.5% and live recombinant virus vaccines for 4.5% of the vaccines used. Most of these vaccines were used in the H5N1 HPAI panzootic, with more than 99% employed in the People's Republic of China, Egypt, Indonesia and Vietnam. Implementation of vaccination in these four countries occurred after H5N1 HPAI became enzootic in domestic poultry and vaccination did not result in the enzootic infections. Vaccine usage prevented clinical disease and mortality in chickens, and maintained rural livelihoods and food security during HPAI outbreaks. Low-pathogenicity notifiable avian influenza (LPNAI) became reportable to the World Organisation for Animal Health in 2006 because some H5 and H7 low-pathogenicity avian influenza (LPAI) viruses have the potential to mutate to HPAI viruses. Fewer outbreaks of LPNAI have been reported than of HPAI and only six countries used vaccine in control programmes, accounting for 8.1% of the total H5/H7 AI vaccine usage, as compared to 91.9% of the vaccine used against HPAI. Of the six countries that have used vaccine to control LPNAI, Mexico, Guatemala, El Salvador and Italy have been the biggest users. In countries with enzootic HPAI and LPNAI, development and implementation of exit strategies has been difficult.


Subject(s)
Disease Outbreaks/veterinary , Influenza A virus/immunology , Influenza A virus/pathogenicity , Influenza Vaccines , Influenza in Birds/prevention & control , Animals , Disease Outbreaks/prevention & control , Global Health , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N2 Subtype/immunology , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza A Virus, H7N1 Subtype/immunology , Influenza A Virus, H7N1 Subtype/pathogenicity , Influenza A Virus, H7N3 Subtype/immunology , Influenza A Virus, H7N3 Subtype/pathogenicity , Influenza A virus/classification , Influenza Vaccines/administration & dosage , Influenza Vaccines/classification , Influenza Vaccines/economics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Surveys and Questionnaires , Vaccination/economics , Vaccination/statistics & numerical data , Vaccination/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...