Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nutrition ; 108: 111945, 2023 04.
Article in English | MEDLINE | ID: mdl-36696704

ABSTRACT

OBJECTIVES: Maternal protein-caloric restriction during lactation can malprogram offspring into having a lean phenotype associated with metabolic dysfunction in early life and adulthood. The aim of this study was to investigate the relationships between nutritional stress, maternal behavior and metabolism, milk composition, and offspring parameters. Additionally, we focused on the role of hypothalamus-pituitary-adrenal axis hyperactivation during lactation. METHODS: Dams were fed a low-protein diet (4% protein) during the first 2 wk of lactation or a normal-protein diet (20% protein) during all lactation. Analyses of dams, milk, and offspring were conducted on postnatal days (PD) 7, 14, and 21. RESULTS: Body weight and food intake decreased in dams, which was associated with reduced fat pad stores and increased corticosterone levels at PD 14. The stressed low-protein diet dams demonstrated alterations in behavior and offspring care. Despite nutritional deprivation, dams adapted their metabolism to provide adequate energy supply through milk; however, we demonstrated elevated corticosterone and total fat levels in milk at PD 14. Male offspring also showed increased corticosterone at PD 7, associated with a lean phenotype and alterations in white and brown adipose tissue morphology at PD 21. CONCLUSION: Exposure to protein-caloric restriction diet of dams during lactation increased the glucocorticoid levels in dams, milk, and offspring, which is associated with alterations in maternal behavior and milk composition. Thus, glucocorticoids and milk composition may play an important role in metabolic programming induced by maternal undernutrition.


Subject(s)
Milk , Obesity , Female , Rats , Animals , Male , Humans , Obesity/metabolism , Caloric Restriction , Hypothalamo-Hypophyseal System , Corticosterone , Pituitary-Adrenal System , Lactation/physiology , Proteins/metabolism , Adipose Tissue, Brown/metabolism , Maternal Nutritional Physiological Phenomena
2.
Nutrition ; 103-104: 111776, 2022.
Article in English | MEDLINE | ID: mdl-35964439

ABSTRACT

OBJECTIVES: Maternal circadian eating time and frequency are associated with altered glucose metabolism during pregnancy in humans. Research on long maternal fasting intervals is inconclusive, and little is known about the effect of maternal time feeding on offspring health. Therefore, the aim of the present study is to determine whether maternal time feeding influences the metabolic status of both male and female offspring. METHODS: Pregnant rats were provided ad libitum access to chow diet or fed during either the light phase (LP) or dark phase (DP) during embryonic development. At the age of 150 days, glucose tolerance, lipid concentrations, and insulin secretion were determined in adult male and female offspring. RESULTS: Both male and female offspring of LP and DP dams exhibited alterations in the lipid profile, and female offspring were glucose intolerant. Glucose-stimulated insulin secretion decreased in male and female offspring of LP and DP dams. Acetylcholine increased insulin secretion in male and female offspring. Islets from male and female offspring of DP dams exhibited less pronounced inhibition of insulin secretion by epinephrine, suggesting alterations in the cholinergic and adrenergic pathways in these animals. CONCLUSIONS: Our data suggest that a time-restricted feeding regimen during embryonic development could program rat offspring for metabolic dysfunction during adulthood.


Subject(s)
Insulin , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Rats , Male , Female , Animals , Adult , Infant , Insulin/metabolism , Fasting , Glucose/metabolism , Embryonic Development , Lipids
3.
Arch Med Res ; 53(5): 492-500, 2022 07.
Article in English | MEDLINE | ID: mdl-35840468

ABSTRACT

BACKGROUND: The intestinal microbiota is involved in many physiological processes. However, the effects of microbiota in metabolic programming still unknow. We evaluated whether the transplantation of fecal microbiota during early life can program health or disease during adulthood in a model of lean and obese male and female Wistar rats. METHODS: Parental obesity were induced using a small litter (SL, 3 pups/dam) model. At 90 d old, normal litter (NL, 9 pups/dam) and SL males and females (parents) from different litters were mated: NL male vs. NL female; SL male vs. SL female. After birth, male and female offspring rats were also standardized in normal litters or small litters . From the 10th until 25th d of life, the NL and SL male and female offspring received via gavage of a solution containing the diluted feces of the opposite dam (fecal microbiota, M) or saline solution (S). At 90 d of age, biometric and biochemical parameters were assessed. RESULTS: NLM male rats transplanted with obese microbiota showed increased body weight, and fat pad deposition, hyperinsulinemia, glucose intolerance and dyslipidemia. SLM male rats transplanted with lean microbiota had decreased retroperitoneal and mesenteric fat, triglycerides and VLDL levels and improvement of glucose tolerance. Despite SLM female rats showed higher visceral fat, microbiota transplantation in female rats caused no changes in these parameters compared with control groups. CONCLUSION: Fecal microbiota transplantation during lactation induces long-term effects on the metabolism of male Wistar rats. However, female rats were resistant to metabolic alterations caused by the treatment.


Subject(s)
Fecal Microbiota Transplantation , Lactation , Adipose Tissue/metabolism , Animals , Animals, Newborn , Body Weight , Female , Male , Obesity/metabolism , Obesity/therapy , Rats , Rats, Wistar
4.
J Dev Orig Health Dis ; 13(3): 406-410, 2022 06.
Article in English | MEDLINE | ID: mdl-34284843

ABSTRACT

Exercise counteracts obesity effects, but information on how early-life obesity may affect long-term adaptation to exercise is lacking. This study investigates the impact of early-life postnatal overfeeding (PO) on animals' adaptation to exercise. Only male Wistar rats were used. On postnatal day (PN) 30, rats from control (NL-9 pups) or PO (SL-3 pups) litters were separated into four groups: NL-sedentary (NL-Se), NL-exercised (NL-Ex), SL-sedentary (SL-Se), and SL-exercised (SL-Ex). Exercised groups performed moderate-intensity exercise, running on a treadmill, from PN30 to PN90. Further experiments were carried out between PN90 and PN92. PO promoted obesity in SL versus NL rats (P < 0.05). Exercise reduced body weight (P < 0.001), body fat (P < 0.01), and improved glucose homeostasis in SL-Ex versus SL-Se. SL-Ex presented lower VO2max (P < 0.01) and higher post-exercise LDH (P < 0.05) compared to NL-Ex rats. Although moderate exercise counteracted obesity in SL rats, early-life overnutrition restricts fitness gains in adulthood, indicating that early obesity may impair animals' adaptation to exercise.


Subject(s)
Overnutrition , Animals , Animals, Newborn , Body Weight , Male , Muscles , Obesity/etiology , Overnutrition/complications , Rats , Rats, Wistar
5.
Front Endocrinol (Lausanne) ; 12: 660793, 2021.
Article in English | MEDLINE | ID: mdl-34149616

ABSTRACT

Metformin is an antidiabetic drug used for the treatment of diabetes and metabolic diseases. Imbalance in the autonomic nervous system (ANS) is associated with metabolic diseases. This study aimed to test whether metformin could improve ANS function in obese rats. Obesity was induced by neonatal treatment with monosodium L-glutamate (MSG). During 21-100 days of age, MSG-rats were treated with metformin 250 mg/kg body weight/day or saline solution. Rats were euthanized to evaluate biometric and biochemical parameters. ANS electrical activity was recorded and analyzed. Metformin normalized the hypervagal response in MSG-rats. Glucose-stimulated insulin secretion in isolated pancreatic islets increased in MSG-rats, while the cholinergic response decreased. Metformin treatment normalized the cholinergic response, which involved mostly the M3 muscarinic acetylcholine receptor (M3 mAChR) in pancreatic beta-cells. Protein expression of M3 mAChRs increased in MSG-obesity rats, while metformin treatment decreased the protein expression by 25%. In conclusion, chronic metformin treatment was effective in normalizing ANS activity and alleviating obesity in MSG-rats.


Subject(s)
Autonomic Nervous System/drug effects , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Obesity/drug therapy , Acetylcholine/pharmacology , Animals , Glucose/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Neostigmine/pharmacology , Obesity/chemically induced , Obesity/metabolism , Obesity/physiopathology , Rats, Wistar , Receptor, Muscarinic M3/metabolism , Sodium Glutamate , Vagus Nerve/drug effects , Vagus Nerve/physiology
6.
J Endocrinol ; 250(3): 81-91, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34101615

ABSTRACT

We tested whether chronic supplementation with soy isoflavones could modulate insulin secretion levels and subsequent recovery of pancreatic islet function as well as prevent metabolic dysfunction induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SL, three pups/dam) and normal litters (NL, nine pups/dam) were used as models of early overfeeding and normal feeding, respectively. At 30 to 90 days old, animals in the SL and NL groups received either soy isoflavones extract (ISO) or water (W) gavage serving as controls. At 90 days old, body weight, visceral fat deposits, glycemia, insulinemia were evaluated. Glucose-insulin homeostasis and pancreatic-islet insulinotropic response were also determined. The early life overnutrition induced by small litter displayed metabolic dysfunction, glucose, and insulin homeostasis disruption in adult rats. However, adult SL rats treated with soy isoflavones showed improvement in glucose tolerance, insulin sensitivity, insulinemia, fat tissue accretion, and body weight gain, compared with the SL-W group. Pancreatic-islet response to cholinergic, adrenergic, and glucose stimuli was improved in both isoflavone-treated groups. In addition, different isoflavone concentrations increased glucose-stimulated insulin secretion in islets of all groups with higher magnitude in both NL and SL isoflavone-treated groups. These results indicate that long-term treatment with soy isoflavones inhibits early overfeeding-induced metabolic dysfunction in adult rats and modulated the process of insulin secretion in pancreatic islets.


Subject(s)
Islets of Langerhans/drug effects , Isoflavones/pharmacology , Metabolic Diseases/prevention & control , Animals , Animals, Newborn , Blood Glucose/metabolism , Body Weight/drug effects , Disease Models, Animal , Female , Insulin/metabolism , Insulin Resistance , Insulin Secretion/drug effects , Islets of Langerhans/physiology , Isoflavones/isolation & purification , Male , Metabolic Diseases/etiology , Metabolic Diseases/pathology , Overnutrition/complications , Overnutrition/metabolism , Overnutrition/pathology , Pregnancy , Rats , Rats, Wistar , Sex Factors , Glycine max/chemistry
7.
Exp Physiol ; 105(12): 2051-2060, 2020 12.
Article in English | MEDLINE | ID: mdl-33074581

ABSTRACT

NEW FINDINGS: What is the central question of this study? Studies reported the efficacy of metformin as a promising drug for preventing or treating of metabolic diseases. Nutrient stresses during neonatal life increase long-term risk for cardiometabolic diseases. Can early metformin treatment prevent the malprogramming effects of early overfeeding? What is the main finding and its importance? Neonatal metformin treatment prevented early overfeeding-induced metabolic dysfunction in adult rats. Inhibition of early hyperinsulinaemia and adult hyperphagia might be associated with decreased metabolic disease risk in these animals. Therefore, interventions during infant development offer a key area for future research to identify potential strategies to prevent the long-term metabolic diseases. We suggest that metformin is a potential tool for intervention. ABSTRACT: Given the need for studies investigating the possible long-term effects of metformin use at crucial stages of development, and taking into account the concept of metabolic programming, the present work aimed to evaluate whether early metformin treatment might program rats to resist the development of adult metabolic dysfunctions caused by overnutrition during the neonatal suckling phase. Wistar rats raised in small litters (SLs, three pups per dam) and normal litters (NLs, nine pups per dam) were used as models of early overfeeding and normal feeding, respectively. During the first 12 days of suckling, animals from SL and NL groups received metformin, whereas the controls received saline injections. Food intake and body weight were monitored from weaning until 90 days of age, when biometric and biochemical parameters were assessed. The metformin treatment decreased insulin concentrations in pups from SL groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, body weight gain, white fat pad stores and food intake. Low-glucose insulinotrophic effects were observed in pancreatic islets from both NL and SL groups. These results indicate that early postnatal treatment with metformin inhibits early overfeeding-induced metabolic dysfunctions in adult rats.


Subject(s)
Islets of Langerhans/drug effects , Metabolic Diseases/prevention & control , Metformin/pharmacology , Overnutrition/drug therapy , Adipose Tissue, White/metabolism , Animals , Animals, Newborn , Blood Glucose/drug effects , Body Composition/drug effects , Body Weight/drug effects , Female , Insulin/metabolism , Insulin Resistance/physiology , Islets of Langerhans/metabolism , Leptin/metabolism , Male , Metabolic Diseases/metabolism , Obesity/drug therapy , Obesity/metabolism , Overnutrition/metabolism , Rats , Rats, Wistar , Weight Gain/drug effects
8.
J Dev Orig Health Dis ; 11(5): 484-491, 2020 10.
Article in English | MEDLINE | ID: mdl-32249729

ABSTRACT

Currently, metabolic disorders are one of the major health problems worldwide, which have been shown to be related to perinatal nutritional insults, and the autonomic nervous system and endocrine pancreas are pivotal targets of the malprogramming of metabolic function. We aimed to assess glucose-insulin homeostasis and the involvement of cholinergic responsiveness (vagus nerve activity and insulinotropic muscarinic response) in pancreatic islet capacity to secrete insulin in weaned rat offspring whose mothers were undernourished in the first 2 weeks of the suckling phase. At delivery, dams were fed a low-protein (4% protein, LP group) or a normal-protein diet (20.5% protein, NP group) during the first 2 weeks of the suckling period. Litter size was adjusted to six pups per mother, and rats were weaned at 21 days old. Weaned LP rats presented a lean phenotype (P < 0.01); hypoglycaemia, hypoinsulinaemia and hypoleptinaemia (P < 0.05); and normal corticosteronaemia (P > 0.05). In addition, milk insulin levels in mothers of the LP rats were twofold higher than those of mothers of the NP rats (P < 0.001). Regarding glucose-insulin homeostasis, weaned LP rats were glucose-intolerant (P < 0.01) and displayed impaired pancreatic islet insulinotropic function (P < 0.05). The M3 subtype of the muscarinic acetylcholine receptor (M3mAChR) from weaned LP rats was less responsive, and the superior vagus nerve electrical activity was reduced by 30% (P < 0.01). A low-protein diet in the suckling period malprogrammes the vagus nerve to low tonus and impairs muscarinic response in the pancreatic ß-cells of weaned rats, which are imprinted to secrete inadequate insulin amounts from an early age.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Islets of Langerhans/embryology , Malnutrition/physiopathology , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects/physiopathology , Animals , Blood Glucose/analysis , Cells, Cultured , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Diet, Protein-Restricted/adverse effects , Female , Glucose/metabolism , Glucose Tolerance Test , Insulin/metabolism , Insulin-Secreting Cells , Islets of Langerhans/innervation , Islets of Langerhans/metabolism , Islets of Langerhans/physiopathology , Lactation/physiology , Male , Malnutrition/etiology , Pregnancy , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/metabolism , Primary Cell Culture , Rats , Rats, Wistar , Vagus Nerve/physiopathology , Weaning
9.
Nutr Neurosci ; 23(6): 432-443, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30187832

ABSTRACT

Objectives: We aimed to assess the effects of a maternal protein-caloric restriction diet during late pregnancy on the metabolism of rat offspring fed a high-fat diet (HFD) during adulthood.Methods: During late pregnancy, rat dams received either a low-protein (4%; LP group) or normoprotein (23%; NP group) diet. After weaning, the offspring were fed a standard diet (Control; C). Male offspring (60 days old) from both groups were then fed either the C diet or HFD until they were 90 days old. The adult offspring and maternal metabolic parameters and autonomic nervous system (ANS) were then evaluated.Results: Dams exhibited low body weight gain and food intake during the LP diet consumption. At lactation, these dams showed high body weight gain, hypoinsulinemia and hyperglycemia. The maternal LP diet resulted in low body weights for the pups. There were also no differences in the metabolic parameters between the adult LP offspring that were fed the C diet and the NP group. Adults of both groups that were fed the HFD developed obesity associated with altered insulin/ glucose homeostasis and altered ANS activity; however, the magnitudes of these parameters were higher in the LP group than in the NP group.Conclusions: Maternal protein malnutrition during the last third of pregnancy malprograms the metabolism of rat offspring, resulting in increased vulnerability to HFD-induced obesity, and the correlated metabolic impairment might be associated with lower sympathetic nerve activity in adulthood.


Subject(s)
Malnutrition/metabolism , Maternal Nutritional Physiological Phenomena , Pregnancy Complications/metabolism , Sympathetic Nervous System/metabolism , Animals , Diet, High-Fat/adverse effects , Female , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats, Wistar
10.
Toxicology ; 425: 152250, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31326399

ABSTRACT

Evidence suggests that low concentration perinatal exposure to environmental contaminants, such as organophosphate (OP) is associated with later life insulin resistance and type 2 diabetes. The aim of this work was to investigate whether chronic maternal OP exposure exacerbates metabolic dysfunctions in early-overfed rats. During pregnancy and lactational periods, dams received OP by gavage. To induce neonatal overnutrition at postnatal day 3, pups were standardized to 9 or 3 per nest. At 90-days-old, glucose-insulin homeostasis and insulin release from pancreatic islets were analyzed. While both OP exposure and overfeeding alone did induce diabetogenic phenotypes in adulthood, there was no exacerbation in rats that experienced both. Unexpectedly, the group that experienced both had improved adiposity, metabolic parameters, attenuated insulin release from isolated islets in the presence of glucose and low function of muscarinic acetylcholine receptor M3, as well as an attenuation of beta cell mass hyperplasia. High levels of butyrylcholinesterase and low levels of insulin in milk may contribute to the OP-induced developmental programming. Our study showed that maternal OP exposure may program insulin release as well as endocrine pancreas structure, thus affecting metabolism in adulthood. Our data suggest that while perinatal OP exposure alone increases the risk for later life T2D, it actually reverses many of the programmed metabolic dysfunction that is induced by postnatal overfeeding. These surprising results may suggest that low-dose administration of acetylcholinesterase inhibitors could be of utility in preventing detrimental developmental programming that is caused by early-life overnutrition.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Maternal Exposure , Metabolic Diseases/drug therapy , Organophosphates/pharmacology , Overnutrition/drug therapy , Animals , Animals, Newborn , Blood Glucose/analysis , Body Composition/drug effects , Cholinesterase Inhibitors/administration & dosage , Energy Intake/drug effects , Female , Glucose Tolerance Test , Insulin/blood , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Metabolic Diseases/etiology , Organophosphates/administration & dosage , Overnutrition/complications , Pregnancy , Prenatal Exposure Delayed Effects/drug therapy , Rats , Rats, Wistar
11.
J Physiol ; 597(15): 3905-3925, 2019 08.
Article in English | MEDLINE | ID: mdl-31210356

ABSTRACT

KEY POINTS: Cancer growth, cell proliferation and cachexia index can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins in adolescence. Walker 256 tumour-bearing rats who started exercise training during adolescence did not revert the basal low glycaemia and insulinaemia observed before tumour cell inoculation. The moderate exercise training improved glucose tolerance and peripheral insulin sensitivity only in rats exercised early in adolescence. The chronic effects of our exercise protocol are be beneficial to prevent cancer cachexia and hold clear potential as a nonpharmacological therapy of insulin sensitization. ABSTRACT: We tested the hypothesis that moderate exercise training, performed early, starting during adolescence or later in life during adulthood, can inhibit tumour cell growth as a result of changes in biometric and metabolic markers. Male rats that were 30 and 70 days old performed a treadmill running protocol over 8 weeks for 3 days week-1 , 44 min day-1 and at 55-65% V̇O2max . After the end of training, a batch of rats was inoculated with Walker 256 carcinoma cells. At 15 days after carcinoma cell inoculation, the tumour was weighed and certain metabolic parameters were evaluated. The data demonstrated that physical performance was better in rats that started exercise training during adolescence according to the final workload and V̇O2max . Early or later moderate exercise training decreased the cachexia index, cell proliferation and tumour growth; however, the effects were more pronounced in rats that exercised during adolescence. Low glycaemia, insulinaemia and tissue insulin sensitivity was not reverted in Walker 256 tumour-bearing rats who trained during adolescence. Cancer growth can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins during adolescence. In addition, improvement in glucose-insulin homeostasis might be involved in this process.


Subject(s)
Carcinoma 256, Walker/therapy , Physical Conditioning, Animal/methods , Animals , Cachexia/metabolism , Cachexia/prevention & control , Carcinoma 256, Walker/pathology , Carcinoma 256, Walker/prevention & control , Cells, Cultured , Glucose/metabolism , Insulin Resistance , Male , Rats , Rats, Wistar
12.
J Dev Orig Health Dis ; 10(6): 608-615, 2019 12.
Article in English | MEDLINE | ID: mdl-31130151

ABSTRACT

Early-life chronic exposure to environmental contaminants, such as bisphenol-A, particulate matter air pollution, organophosphorus pesticides, and pharmaceutical drugs, among others, may affect central tissues, such as the hypothalamus, and peripheral tissues, such as the endocrine pancreas, causing inflammation and apoptosis with severe implications to the metabolism. The Developmental Origins of Health and Disease (DOHaD) concept articulates events in developmental phases of life, such as intrauterine, lactation, and adolescence, to later-life metabolism and health. These developmental phases are more susceptible to environmental changes, such as those caused by environmental contaminants, which may predispose individuals to obesity, metabolic syndrome, and chronic noncommunicable diseases later in life. Alterations in the epigenome are explored as an underlying mechanism to the programming effects on metabolism, as the expression of key genes related with central and peripheral metabolic functions may be altered in response to environmental disturbances. Studies show that environmental contaminants may affect gene expressions in mammals, especially when exposed to during the developmental phases of life, leading to metabolic disorders in adulthood. In this review, we discuss the current obesity epidemics, the DOHaD concept, pollutants' toxicology, environmental control, and the role of environmental contaminants in the central and peripheral programming of obesity and metabolic syndrome. Improving environmental monitoring may directly affect the quality of life of the population and help protect the future generations from metabolic diseases.


Subject(s)
Environmental Exposure/adverse effects , Environmental Monitoring/methods , Metabolic Diseases/diagnosis , Metabolic Diseases/etiology , Obesity/complications , Prenatal Exposure Delayed Effects/diagnosis , Prenatal Exposure Delayed Effects/etiology , Animals , Female , Humans , Pregnancy
13.
Front Physiol ; 10: 170, 2019.
Article in English | MEDLINE | ID: mdl-30930783

ABSTRACT

We aimed to test whether moderate physical training can induce long-lasting protection against cardiovascular risk factors induced by high fat diet (HFD) intake, even after cessation of training. 90-days-old Wistar rats were submitted to a sedentary lifestyle or moderate physical training, three times a week, for 30 days. Following this, at 120 days-of age, sedentary and trained rats received a hypercaloric diet (HFD) or a commercial diet normal fat diet (NFD) for 30 days. Body weight (BW) and food intake were evaluated weekly. At 150 days-of age, hemodynamic measures (systolic, diastolic, mean blood pressure, pulse pressure, pulse interval and heart rate) were made via an indwelling femoral artery catheter. Beat-to-beat data were analyzed to calculate power spectra of systolic blood pressure (SBP) and pulse interval. After euthanasia, mesenteric fat pads were removed and weighted and total blood was stored for later analysis of lipid profile. Consumption of a HFD increased blood pressure (BP), pulse pressure, low frequency BP variability, BW gain, fat pad stores and induced dyslipidemia. Interestingly, prior physical training was able to partially protect against this rise in BP and body fat stores. Prior physical training did not totally protect against the effects of HFD consumption but previously trained animals did demonstrate resistance to the development of cardiometabolic alterations, which illustrate that the benefits of physical training may be partially maintained even after 30 days of detraining period.

14.
Front Physiol ; 9: 465, 2018.
Article in English | MEDLINE | ID: mdl-29867528

ABSTRACT

Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

15.
Int J Endocrinol ; 2018: 3189879, 2018.
Article in English | MEDLINE | ID: mdl-29853880

ABSTRACT

Stevia rebaudiana (Bert.) Bertoni besides being a source of noncaloric sweeteners is also an important source of bioactive molecules. Many plant extracts, mostly obtained with ethyl acetate solvent, are rich in polyphenol compounds that present insulinotropic effects. To investigate whether the nonsweetener fraction, which is rich in phenolic compounds isolated from Stevia rebaudiana with the solvent ethyl acetate (EAF), has an insulinotropic effect, including interference at the terminals of the autonomic nervous system of the pancreatic islets of rats. Pancreatic islets were isolated from Wistar rats and incubated with EAF and inhibitory or stimulatory substances of insulin secretion, including cholinergic and adrenergic agonists and antagonists. EAF potentiates glucose-stimulated insulin secretion (GSIS) only in the presence of high glucose and calcium-dependent concentrations. EAF increased muscarinic insulinotropic effects in pancreatic islets, interfering with the muscarinic receptor subfamily M3. Adrenergic inhibitory effects on GSIS were attenuated in the presence of EAF, which interfered with the adrenergic α2 receptor. Results suggest that EAF isolated from stevia leaves is a potential therapy for treating type 2 diabetes mellitus by stimulating insulin secretion only in high glucose concentrations, enhancing parasympathetic signal transduction and inhibiting sympathetic signal transduction in beta cells.

16.
J Nutr Biochem ; 57: 153-161, 2018 07.
Article in English | MEDLINE | ID: mdl-29730509

ABSTRACT

Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet.


Subject(s)
Diet, Protein-Restricted , Insulin Resistance , Obesity/metabolism , Animals , Autonomic Nervous System/physiology , Body Composition , Diet, High-Fat/adverse effects , Eating , Female , Glucose/pharmacology , Glucose Tolerance Test , Insulin/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Lactation , Lipids/blood , Male , Obesity/etiology , Obesity/prevention & control , Rats, Wistar
17.
Eur J Nutr ; 57(2): 477-486, 2018 Mar.
Article in English | MEDLINE | ID: mdl-27752755

ABSTRACT

PURPOSE: Environmental and nutritional disorders during perinatal period cause metabolic dysfunction in the progeny and impair human health. Advanced glycation end products (AGEs) are primarily produced during metabolism of excess blood glucose, which is observed in diabetes. Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs, which disturbs the metabolism. This work aimed to investigate whether the maternal MG treatment during lactation programs the progeny to metabolic dysfunction later in life. METHODS: Female Wistar rats were divided into two groups: control group (C) treated with saline and MG group treated with MG (60 mg/kg/day) by gavage throughout the lactation period. Both mothers and offspring were fed a standard chow. At weaning, breast milk composition was analyzed and mothers euthanized for blood and tissue sample collections. At 90 days of age, offspring were submitted to glucose tolerance test (ivGTT) and euthanized for blood and tissue samples collection. RESULTS: MG mothers showed increase in glucose and fructosamine levels; however, they showed low insulin levels and failure in ß-cell function (p < 0.05). MG mothers also showed dyslipidemia (p < 0.05). Moreover, breast milk had elevated levels of glucose, triglycerides, cholesterol and fructosamine and low insulin (p < 0.05). Interestingly, MG offspring had increased body weight and adipose tissue at adulthood, and they also showed glucose intolerance and failure in ß-cell function (p < 0.05). Besides, MG offspring showed dyslipidemia (p < 0.05) increasing cardiovascular diseases risk. CONCLUSIONS: Maternal MG treatment negatively affects the male rat offspring, leading to type 2 diabetes and dyslipidemia in later life, possibly by changes in breast milk composition.


Subject(s)
Diabetes Mellitus, Type 2/chemically induced , Dyslipidemias/chemically induced , Environmental Pollutants/toxicity , Lactation/drug effects , Maternal Exposure/adverse effects , Obesity/chemically induced , Pyruvaldehyde/toxicity , Adiposity/drug effects , Administration, Oral , Animals , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Dyslipidemias/blood , Dyslipidemias/metabolism , Dyslipidemias/pathology , Environmental Pollutants/administration & dosage , Environmental Pollutants/analysis , Female , Insulin/analysis , Insulin/blood , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Lactation/metabolism , Male , Milk/chemistry , Obesity/blood , Obesity/metabolism , Obesity/pathology , Pregnancy , Pyruvaldehyde/administration & dosage , Pyruvaldehyde/analysis , Random Allocation , Rats, Sprague-Dawley , Toxicokinetics , Weight Gain/drug effects
18.
Front Physiol ; 8: 807, 2017.
Article in English | MEDLINE | ID: mdl-29163186

ABSTRACT

An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.

19.
Sci Rep ; 7(1): 7634, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28794439

ABSTRACT

Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.


Subject(s)
Obesity/prevention & control , Overnutrition , Physical Conditioning, Animal , Adipose Tissue/anatomy & histology , Animals , Animals, Newborn/anatomy & histology , Blood Glucose , Body Weight , Disease Models, Animal , Female , Lactation , Pregnancy , Rats
20.
Cell Physiol Biochem ; 42(1): 81-90, 2017.
Article in English | MEDLINE | ID: mdl-28528338

ABSTRACT

BACKGROUND/AIMS: The sulphonylurea glibenclamide (Gli) is widely used in the treatment of type 2 diabetes. In addition to its antidiabetic effects, low incidences of certain types of cancer have been observed in Gli-treated diabetic patients. However, the mechanisms underlying this observation remain unclear. The aim of the present work was to evaluate whether obese adult rats that were chronically treated with an antidiabetic drug, glibenclamide, exhibit resistance to rodent breast carcinoma growth. METHODS: Neonatal rats were treated with monosodium L-glutamate (MSG) to induce prediabetes. Control and MSG groups were treated with Gli (2 mg/kg body weight/day) from weaning to 100 days old. After Gli treatment, the control and MSG rats were grafted with Walker-256 tumour cells. After 14 days, grafted rats were euthanized, and tumour weight as well as glucose homeostasis were evaluated. RESULTS: Treatment with Gli normalized tissue insulin sensitivity and glucose tolerance, suppressed fasting hyperinsulinaemia, reduced fat tissue accretion in MSG rats, and attenuated tumour growth by 27% in control and MSG rats. CONCLUSIONS: Gli treatment also resulted in a large reduction in the number of PCNA-positive tumour cells. Although treatment did improve the metabolism of pre-diabetic MSG-rats, tumour growth inhibition may be a more direct effect of glibenclamide.


Subject(s)
Cell Proliferation/drug effects , Glyburide/pharmacology , Prediabetic State/prevention & control , Animals , Cachexia/etiology , Cell Line, Tumor , Glucose/metabolism , Glyburide/therapeutic use , Hyperinsulinism/prevention & control , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Immunohistochemistry , Male , Obesity/complications , Obesity/metabolism , Obesity/pathology , Prediabetic State/etiology , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Wistar , Sodium Glutamate/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL