Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Virol Methods ; 327: 114923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561124

ABSTRACT

This study describes the development and preliminary validation of a new serological assay using MERS-CoV S1 protein in an indirect enzyme-linked immunosorbent assay (ELISA) format. This assay has the advantage of being able to test MERS-CoV serum samples in a PC2 laboratory without the need for a high-level biocontainment laboratory (PC3 or PC4), which requires highly trained and skilled staff and a high level of resources and equipment. Furthermore, this MERS-CoV S1 ELISA enables a larger number of samples to be tested quickly, with results obtained in approximately five hours. The MERS-CoV S1 ELISA demonstrated high analytical specificity, with no cross-reactivity observed in serum of animals infected with other viruses, including different coronaviruses. We tested 166 positive and 40 negative camel serum samples and have estimated the diagnostic sensitivity (DSe) to be 99.4% (95% CI: 96.7 - 100.0%) and diagnostic specificity (DSp) to be 100% (95% CI: 97.2%-100.0%) relative to the assigned serology results (ppNT and VNT) using a S/P ratio cut-off value of >0.58. The findings of this study showed that our MERS-CoV S1 ELISA was more sensitive than the commercial EUROIMMUN ELISA (Se 99.4% vs 84.9%) and comparable to the ppNT assay, and therefore could be used as a diagnostic aid in countries in the Middle East where MERS-CoV is endemic in dromedary camels. The assay reagents and protocol were easily adapted and transferred from an Australian laboratory to a laboratory in the University of Hong Kong. Thus, the results described here show that the MERS-CoV S1 ELISA represents a cheap, rapid, robust, and reliable assay to support surveillance of MERS-CoV in camels in endemic regions.


Subject(s)
Antibodies, Viral , Camelids, New World , Camelus , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Middle East Respiratory Syndrome Coronavirus , Sensitivity and Specificity , Animals , Camelus/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Camelids, New World/virology , Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology
2.
Theranostics ; 12(16): 6915-6930, 2022.
Article in English | MEDLINE | ID: mdl-36276654

ABSTRACT

Rationale: An antibody-drug conjugate (ADC) is a targeted therapy consisting of a cytotoxic payload that is linked to an antibody which targets a protein enriched on malignant cells. Multiple ADCs are currently used clinically as anti-cancer agents significantly improving patient survival. Herein, we evaluated the rationale of targeting the cell surface oncoreceptor CUB domain-containing protein 1 (CDCP1) using ADCs and assessed the efficacy of CDCP1-directed ADCs against a range of malignant tumors. Methods: CDCP1 mRNA expression was evaluated using large transcriptomic datasets of normal/tumor samples for 23 types of cancer and 15 other normal organs, and CDCP1 protein expression was examined in 34 normal tissues, >300 samples from six types of cancer, and in 49 cancer cell lines. A recombinant human/mouse chimeric anti-CDCP1 antibody (ch10D7) was labelled with 89Zirconium or monomethyl auristatin E (MMAE) and tested in multiple pre-clinical cancer models including 36 cancer cell lines and three mouse xenograft models. Results: Analysis of CDCP1 expression indicates elevated CDCP1 expression in the majority of the cancers and restricted expression in normal human tissues. Antibody ch10D7 demonstrates a high affinity and specificity for CDCP1 inducing cell signalling via Src accompanied by rapid internalization of ch10D7/CDCP1 complexes in cancer cells. 89Zirconium-labelled ch10D7 accumulates in CDCP1 expressing cells enabling detection of pancreatic cancer xenografts in mice by PET imaging. Cytotoxicity of MMAE-labelled ch10D7 against kidney, colorectal, lung, ovarian, pancreatic and prostate cancer cells in vitro, correlates with the level of CDCP1 on the plasma membrane. ch10D7-MMAE displays robust anti-tumor effects against mouse xenograft models of pancreatic, colorectal and ovarian cancer. Conclusion: CDCP1 directed imaging agents will be useful for selecting cancer patients for personalized treatment with cytotoxin-loaded CDCP1 targeting agents including antibody-drug conjugates.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Immunoconjugates , Male , Female , Humans , Animals , Mice , Immunoconjugates/pharmacology , Zirconium , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cytotoxins , RNA, Messenger , Antigens, Neoplasm , Cell Adhesion Molecules
3.
J Gen Virol ; 103(8)2022 08.
Article in English | MEDLINE | ID: mdl-35972225

ABSTRACT

Bats have been implicated as the reservoir hosts of filoviruses in Africa, with serological evidence of filoviruses in various bat species identified in other countries. Here, serum samples from 190 bats, comprising 12 different species, collected in Australia were evaluated for filovirus antibodies. An in-house indirect microsphere assay to detect antibodies that cross-react with Ebola virus (Zaire ebolavirus; EBOV) nucleoprotein (NP) followed by an immunofluorescence assay (IFA) were used to confirm immunoreactivity to EBOV and Reston virus (Reston ebolavirus; RESTV). We found 27 of 102 Yinpterochiroptera and 19 of 88 Yangochiroptera samples were positive to EBOV NP in the microsphere assay. Further testing of these NP positive samples by IFA revealed nine bat sera that showed binding to ebolavirus-infected cells. This is the first report of filovirus-reactive antibodies detected in Australian bat species and suggests that novel filoviruses may be circulating in Australian bats.


Subject(s)
Chiroptera , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Antibodies, Viral , Australia , Hemorrhagic Fever, Ebola/veterinary , Nucleoproteins
4.
Mol Pharm ; 18(9): 3464-3474, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34448393

ABSTRACT

Optimal cytoreduction for ovarian cancer is often challenging because of aggressive tumor biology and advanced stage. It is a critical issue since the extent of residual disease after surgery is the key predictor of ovarian cancer patient survival. For a limited number of cancers, fluorescence-guided surgery has emerged as an effective aid for tumor delineation and effective cytoreduction. The intravenously administered fluorescent agent, most commonly indocyanine green (ICG), accumulates preferentially in tumors, which are visualized under a fluorescent light source to aid surgery. Insufficient tumor specificity has limited the broad application of these agents in surgical oncology including for ovarian cancer. In this study, we developed a novel tumor-selective fluorescent agent by chemically linking ICG to mouse monoclonal antibody 10D7 that specifically recognizes an ovarian cancer-enriched cell surface receptor, CUB-domain-containing protein 1 (CDCP1). 10D7ICG has high affinity for purified recombinant CDCP1 and CDCP1 that is located on the surface of ovarian cancer cells in vitro and in vivo. Our results show that intravenously administered 10D7ICG accumulates preferentially in ovarian cancer, permitting visualization of xenograft tumors in mice. The data suggest CDCP1 as a rational target for tumor-specific fluorescence-guided surgery for ovarian cancer.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Cell Adhesion Molecules/antagonists & inhibitors , Fluorescent Dyes/administration & dosage , Optical Imaging/methods , Ovarian Neoplasms/diagnosis , Animals , Antibodies, Monoclonal/chemistry , Antigens, Neoplasm , Cell Line, Tumor , Female , Fluorescent Dyes/chemistry , Humans , Indocyanine Green/administration & dosage , Indocyanine Green/chemistry , Injections, Intravenous , Mice , Ovarian Neoplasms/pathology , Xenograft Model Antitumor Assays
5.
Chem Sci ; 12(26): 9004-9016, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34276928

ABSTRACT

Identification of tumors which over-express Epidermal Growth Factor Receptor (EGFR) is important in selecting patients for anti-EGFR therapies. Enzymatic bioconjugation was used to introduce positron-emitting radionuclides (89Zr, 64Cu) into an anti-EGFR antibody fragment for Positron Emission Tomography (PET) imaging the same day as injection. A monovalent antibody fragment with high affinity for EGFR was engineered to include a sequence that is recognized by the transpeptidase sortase A. Two different metal chelators, one for 89ZrIV and one for 64CuII, were modified with a N-terminal glycine to enable them to act as substrates in sortase A mediated bioconjugation to the antibody fragment. Both fragments provided high-quality PET images of EGFR positive tumors in a mouse model at 3 hours post-injection, a significant advantage when compared to radiolabeled full antibodies that require several days between injection of the tracer and imaging. The use of enzymatic bioconjugation gives reproducible homogeneous products with the metal complexes selectively installed on the C-terminus of the antibody potentially simplifying regulatory approval.

6.
Clin Transl Immunology ; 10(4): e1269, 2021.
Article in English | MEDLINE | ID: mdl-33841880

ABSTRACT

OBJECTIVES: Efforts to develop and deploy effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue at pace. Here, we describe rational antigen design through to manufacturability and vaccine efficacy of a prefusion-stabilised spike (S) protein, Sclamp, in combination with the licensed adjuvant MF59 'MF59C.1' (Seqirus, Parkville, Australia). METHODS: A panel recombinant Sclamp proteins were produced in Chinese hamster ovary and screened in vitro to select a lead vaccine candidate. The structure of this antigen was determined by cryo-electron microscopy and assessed in mouse immunogenicity studies, hamster challenge studies and safety and toxicology studies in rat. RESULTS: In mice, the Sclamp vaccine elicits high levels of neutralising antibodies, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells in vivo. In the Syrian hamster challenge model (n = 70), vaccination results in reduced viral load within the lung, protection from pulmonary disease and decreased viral shedding in daily throat swabs which correlated strongly with the neutralising antibody level. CONCLUSION: The SARS-CoV-2 Sclamp vaccine candidate is compatible with large-scale commercial manufacture, stable at 2-8°C. When formulated with MF59 adjuvant, it elicits neutralising antibodies and T-cell responses and provides protection in animal challenge models.

7.
Bioconjug Chem ; 30(10): 2539-2543, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31560523

ABSTRACT

The functionalization of proteins with different cargo molecules is highly desirable for a broad range of applications. However, the reproducible production of defined conjugates with multiple functionalities is a significant challenge. Herein, we report the dual site-specific labeling of an antibody fragment, utilizing the orthogonal Sortase A and π-clamp conjugation methods, and demonstrate that binding of the antibody fragment to its target receptor is retained after dual labeling.


Subject(s)
Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/metabolism , Binding Sites , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Ligands , Staining and Labeling
8.
Neuro Oncol ; 21(8): 1016-1027, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31002307

ABSTRACT

BACKGROUND: Although epidermal growth factor receptor (EGFR) and its truncated, autoactive mutant EGFR variant (v)III are bona fide drivers of tumorigenesis in some gliomas, therapeutic antibodies developed to neutralize this axis have not improved patient survival in a limited number of trials. Previous studies using cells transduced to exogenously express EGFRvIII may have compromised mechanistic studies of anti-EGFR therapeutics. Therefore, we re-assessed the activity of clinical EGFR antibodies in patient-derived gliomaspheres that endogenously express EGFRvIII. METHODS: The antitumor efficacy of antibodies was assessed using in vitro proliferation assays and intracranial orthografts. Receptor activation status, antibody engagement, oncogenic signaling, and mechanism of action after antibody treatment were analyzed by immunoprecipitation and western blotting. Tracking of antibody receptor complexes was conducted using immunofluorescence. RESULTS: The EGFR domain III-targeting antibodies cetuximab, necitumumab, nimotuzumab, and matuzumab did not neutralize EGFRvIII activation. Chimeric monoclonal antibody 806 (ch806) neutralized EGFRvIII, but not wild-type (wt)EGFR activation. Panitumumab was the only antibody that neutralized both EGFRvIII and wtEGFR, leading to reduction of p-S6 signaling and superior in vitro and in vivo antitumor activity. Mechanistically, panitumumab induced recycling of receptor but not degradation as previously described. Panitumumab, via its unique avidity, stably cross-linked EGFRvIII to prevent its activation, while ch806 induced a marked reduction in the active EGFRvIII disulphide-bonded dimer. CONCLUSIONS: We discovered a previously unknown major resistance mechanism in glioma in that most EGFR domain III-targeting antibodies do not neutralize EGFRvIII. The superior in vitro and in vivo antitumor activity of panitumumab supports further clinical testing of this antibody against EGFRvIII-stratified glioma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , ErbB Receptors , Glioma , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , Glioma/drug therapy , Humans , Signal Transduction
9.
J Virol ; 93(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30567986

ABSTRACT

There is a large taxonomic gap in our understanding of mammalian herpesvirus genetics and evolution corresponding to those herpesviruses that infect marsupials, which diverged from eutherian mammals approximately 150 million years ago (mya). We compare the genomes of two marsupial gammaherpesviruses, Phascolarctid gammaherpesvirus 1 (PhaHV1) and Vombatid gammaherpesvirus 1 (VoHV1), which infect koalas (Phascolarctos cinereus) and wombats (Vombatus ursinus), respectively. The core viral genomes were approximately 117 kbp and 110 kbp in length, respectively, sharing 69% pairwise nucleotide sequence identity. Phylogenetic analyses showed that PhaHV1 and VoHV1 formed a separate branch, which may indicate a new gammaherpesvirus genus. The genomes contained 60 predicted open reading frames (ORFs) homologous to those in eutherian herpesviruses and 20 ORFs not yet found in any other herpesvirus. Seven of these ORFs were shared by the two viruses, indicating that they were probably acquired prespeciation, approximately 30 to 40 mya. One of these shared genes encodes a putative nucleoside triphosphate diphosphohydrolase (NTPDase). NTPDases are usually found in mammals and higher-order eukaryotes, with a very small number being found in bacteria. This is the first time that an NTPDase has been identified in any viral genome. Interrogation of public transcriptomic data sets from two koalas identified PhaHV1-specific transcripts in multiple host tissues, including transcripts for the novel NTPDase. PhaHV1 ATPase activity was also demonstrated in vitro, suggesting that the encoded NTPDase is functional during viral infection. In mammals, NTPDases are important in downregulation of the inflammatory and immune responses, but the role of the PhaHV1 NTPDase during viral infection remains to be determined.IMPORTANCE The genome sequences of the koala and wombat gammaherpesviruses show that the viruses form a distinct branch, indicative of a novel genus within the Gammaherpesvirinae Their genomes contain several new ORFs, including ORFs encoding a ß-galactoside α-2,6-sialyltransferase that is phylogenetically closest to poxvirus and insect homologs and the first reported viral NTPDase. NTPDases are ubiquitously expressed in mammals and are also present in several parasitic, fungal, and bacterial pathogens. In mammals, these cell surface-localized NTPDases play essential roles in thromboregulation, inflammation, and immune suppression. In this study, we demonstrate that the virus-encoded NTPDase is enzymatically active and is transcribed during natural infection of the host. Understanding how these enzymes benefit viruses can help to inform how they may cause disease or evade host immune defenses.


Subject(s)
Gammaherpesvirinae/genetics , Marsupialia/virology , Phascolarctidae/virology , Pyrophosphatases/genetics , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Animals , Genome, Viral/genetics , Open Reading Frames/genetics , Phylogeny , Transcriptome/genetics
10.
Proc Natl Acad Sci U S A ; 115(30): 7783-7788, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29997173

ABSTRACT

CD52, a glycophosphatidylinositol (GPI)-anchored glycoprotein, is released in a soluble form following T cell activation and binds to the Siglec (sialic acid-binding Ig-like lectin)-10 receptor on T cells to suppress their function. We show that binding of CD52-Fc to Siglec-10 and T cell suppression requires the damage-associated molecular pattern (DAMP) protein, high-mobility group box 1 (HMGB1). CD52-Fc bound specifically to the proinflammatory Box B domain of HMGB1, and this in turn promoted binding of the CD52 N-linked glycan, in α-2,3 sialic acid linkage with galactose, to Siglec-10. Suppression of T cell function was blocked by anti-HMGB1 antibody or the antiinflammatory Box A domain of HMGB1. CD52-Fc induced tyrosine phosphorylation of Siglec-10 and was recovered from T cells complexed with HMGB1 and Siglec-10 in association with SHP1 phosphatase and the T cell receptor (TCR). Thus, soluble CD52 exerts a concerted immunosuppressive effect by first sequestering HMGB1 to nullify its proinflammatory Box B, followed by binding to the inhibitory Siglec-10 receptor, triggering recruitment of SHP1 to the intracellular immunoreceptor tyrosine-based inhibitory motif of Siglec-10 and its interaction with the TCR. This mechanism may contribute to immune-inflammatory homeostasis in pathophysiologic states and underscores the potential of soluble CD52 as a therapeutic agent.


Subject(s)
CD52 Antigen/immunology , HMGB1 Protein/immunology , Lectins/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Amino Acid Motifs , Antibodies/pharmacology , Female , HMGB1 Protein/antagonists & inhibitors , Humans , Male , Protein Domains , Protein Tyrosine Phosphatase, Non-Receptor Type 6/immunology
11.
Protein Expr Purif ; 116: 19-29, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26196500

ABSTRACT

Hendra virus (family Paramyxoviridae) is a negative sense single-stranded RNA virus (NSRV) which has been found to cause disease in humans, horses, and experimentally in other animals, e.g. pigs and cats. Pteropid bats commonly known as flying foxes have been identified as the natural host reservoir. The Hendra virus nucleocapsid protein (HeV N) represents the most abundant viral protein produced by the host cell, and is highly immunogenic with naturally infected humans and horses producing specific antibodies towards this protein. The purpose of this study was to express and purify soluble, functionally active recombinant HeV N, suitable for use as an immunodiagnostic reagent to detect antibodies against HeV. We expressed both full-length HeV N, (HeV NFL), and a C-terminal truncated form, (HeV NCORE), using a bacterial heterologous expression system. Both HeV N constructs were engineered with an N-terminal Hisx6 tag, and purified using a combination of immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). Purified recombinant HeV N proteins self-assembled into soluble higher order oligomers as determined by SEC and negative-stain transmission electron microscopy. Both HeV N proteins were highly immuno-reactive with sera from animals and humans infected with either HeV or the closely related Nipah virus (NiV), but displayed no immuno-reactivity towards sera from animals infected with a non-pathogenic paramyxovirus (CedPV), or animals receiving Equivac® (HeV G glycoprotein subunit vaccine), using a Luminex-based multiplexed microsphere assay.


Subject(s)
Hendra Virus/chemistry , Hendra Virus/immunology , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Viral/immunology , Cloning, Molecular , Escherichia coli/genetics , Gene Expression , Hendra Virus/genetics , Hendra Virus/ultrastructure , Henipavirus Infections/immunology , Henipavirus Infections/virology , Horses , Humans , Molecular Sequence Data , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/ultrastructure , Plasmids/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/ultrastructure , Swine
12.
Proteins ; 81(10): 1748-58, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23609990

ABSTRACT

Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid-ß (Aß) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aß peptide deposits and the details of the metal-binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aß residues 1-16 fused to the N-terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti-Aß N-terminal antibody WO2. The structure demonstrates that Aß residues 10-16, which are not in complex with the antibody, adopt a mixture of local polyproline II-helix and turn type conformations, enhancing cooperativity between the two adjacent histidine residues His13 and His14. Furthermore, this relatively rigid region of Aß (residues, 10-16) appear as an almost independent unit available for trapping metal ions and provides a rationale for the His13-metal-His14 coordination in the Aß1-16 fragment implicated in Aß metal binding. This novel structure, therefore, has the potential to provide a foundation for investigating the effect of metal ion binding to Aß and illustrates a potential target for the development of future Alzheimer's disease therapeutics aimed at stabilizing the N-terminal monomer structure, in particular residues His13 and His14, and preventing Aß metal-binding-induced neurotoxicity.


Subject(s)
Amyloid beta-Peptides/chemistry , Recombinant Fusion Proteins/chemistry , Amino Acid Sequence , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Escherichia coli , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Models, Molecular , Molecular Sequence Data , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
13.
J Biol Chem ; 288(1): 59-68, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23166326

ABSTRACT

Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.


Subject(s)
Insulin-Like Growth Factor II/chemistry , Neoplasms/metabolism , Animals , Cell Proliferation , Fibroblasts/cytology , Gene Expression Regulation, Neoplastic , Glycosylation , HEK293 Cells , Humans , Insulin-Like Growth Factor Binding Proteins/chemistry , Insulin-Like Growth Factor I/chemistry , Mass Spectrometry/methods , Mice , Protein Binding , Protein Isoforms , Protein Structure, Tertiary , Receptor Protein-Tyrosine Kinases/chemistry , Signal Transduction
14.
Biotechnol Bioeng ; 109(6): 1461-70, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22170409

ABSTRACT

Sortase-mediated protein ligation is a biological covalent conjugation system developed from the enzymatic cell wall display mechanism found in Staphylococcus aureus. This three-component system requires: (i) purified Sortase A (SrtA) enzyme; (ii) a substrate containing the LPXTG peptide recognition sequence; and (iii) an oligo-glycine acceptor molecule. We describe cloning of the single-chain antibody sc528, which binds to the extracellular domain of the epidermal growth factor receptor (EGFR), from the parental monoclonal antibody and incorporation of a LPETGG tag sequence. Utilizing recombinant SrtA, we demonstrate successful incorporation of biotin from GGG-biotin onto sc528. EGFR is an important cancer target and is over-expressed in human tumor tissues and cancer lines, such as the A431 epithelial carcinoma cells. SrtA-biotinylated sc528 specifically bound EGFR expressed on A431 cells, but not negative control lines. Similarly, when sc528 was labeled with fluorescein we observed antigen-specific labeling. The ability to introduce functionality into recombinant antibodies in a controlled, site-specific manner has applications in experimental, diagnostic, and potentially clinical settings. For example, we demonstrate addition of all three reaction components in situ within a biosensor flow cell, resulting in oriented covalent capture and presentation of sc528, and determination of precise affinities for the antibody-receptor interaction.


Subject(s)
Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , ErbB Receptors/antagonists & inhibitors , Single-Chain Antibodies/metabolism , Staining and Labeling/methods , Aminoacyltransferases/genetics , Antibodies, Blocking/genetics , Antibodies, Blocking/immunology , Antibodies, Blocking/metabolism , Bacterial Proteins/genetics , Biotin/metabolism , Cell Line, Tumor , Cysteine Endopeptidases/genetics , ErbB Receptors/immunology , Humans , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
15.
Article in English | MEDLINE | ID: mdl-21206033

ABSTRACT

Arginase (EC 3.5.3.1) is an aminohydrolase that acts on L-arginine to produce urea and ornithine. Two isotypes of the enzyme are found in humans. Type I is predominantly produced in the liver and is a homotrimer of 35 kDa subunits. Human arginase (hArginase) I is seen to be up-regulated in many diseases and is a potential therapeutic target for many diverse indications. Previous reports of crystallization and structure determination of hArginase have always included inhibitors of the enzyme: here, the first case of a true apo crystal form of the enzyme which is suitable for small-molecule soaking is reported. The crystals belonged to space group P2(1)2(1)2(1) and have approximate unit-cell parameters a=53, b=67.5, c=250 Å. The crystals showed slightly anisotropic diffraction to beyond 2.0 Šresolution.


Subject(s)
Arginase/chemistry , Isoenzymes/chemistry , Animals , Arginase/antagonists & inhibitors , Crystallization , Humans , Isoenzymes/antagonists & inhibitors , Molecular Sequence Data
16.
Protein Sci ; 19(2): 299-308, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20014445

ABSTRACT

Alzheimer's disease is the most common form of dementia, affecting 26 million people worldwide. The Abeta peptide (39-43 amino acids) derived from the proteolytic cleavage of the amyloid precursor protein is one of the main constituents of amyloid plaques associated with disease pathogenesis and therefore a validated target for therapy. Recently, we characterized antibody fragments (Fab and scFvs) derived from the murine monoclonal antibody WO-2, which bind the immunodominant epitope ((3)EFRH(6)) in the Abeta peptide at the N-terminus. In vitro, these fragments are able to inhibit fibril formation, disaggregate preformed amyloid fibrils, and protect neuroblastoma cells against oligomer-mediated toxicity. In this study, we describe the humanization of WO-2 using complementary determining region loop grafting onto the human germline gene and the determination of the three-dimensional structure by X-ray crystallography. This humanized version retains a high affinity for the Abeta peptide and therefore is a potential candidate for passive immunotherapy of Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/immunology , Germ Cells/metabolism , Immunoglobulin Fab Fragments/chemistry , Absorptiometry, Photon , Amino Acid Sequence , Amyloid beta-Peptides/metabolism , Animals , Cell Line, Tumor , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Mice , Models, Molecular , Molecular Sequence Data , Protein Multimerization , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Sequence Alignment
17.
Anal Biochem ; 385(2): 346-57, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19073134

ABSTRACT

Antibody generation by phage display and related in vitro display technologies routinely yields large panels of clones detected in primary end-point screenings such as enzyme-linked immunosorbent assay (ELISA). However, for the development of clinical lead candidates, rapid determination of secondary characteristics such as kinetics and thermodynamics is of nearly equal importance. Surface plasmon resonance-based biosensors are ideal tools for carrying out such high-throughput secondary screenings, allowing preliminary but confident ranking and identification of lead clones. A key feature of these assays is the stable and reversible capture of antibody fragments from crude samples leading to high-resolution kinetic analysis of library outputs. Here we exploit the high-affinity interaction between the naturally occurring nuclease domain of E. coli colicin E7 (DNaseE7) and its cognate partner, the immunity protein 7 (Im7), to develop a ligand capture system suitable for accurate kinetic ranking of library clones. We demonstrate generic applicability for a range of antibody formats: scFv antibodies, diabodies, antigen binding fragments (Fabs), and shark V(NAR) single domain antibodies. The system is adaptable and reproducible, with comparable results achieved for both the Biacore T100 and ProteOn XPR36 array biosensors.


Subject(s)
Antibodies/chemistry , Biosensing Techniques/methods , Carrier Proteins/chemistry , Colicins/chemistry , Escherichia coli Proteins/chemistry , Immunoconjugates/chemistry , Drug Evaluation, Preclinical , Enzyme-Linked Immunosorbent Assay , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...