Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9908, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688963

ABSTRACT

Although the 16S rRNA gene is frequently used as a phylogenetic marker in analysis of environmental DNA, this marker often fails to distinguish closely related species, including those in the genus Vibrio. Here, we investigate whether inclusion and analysis of 23S rRNA sequence can help overcome the intrinsic weaknesses of 16S rRNA analyses for the differentiation of Vibrio species. We construct a maximum likelihood 16S rRNA gene tree to assess the use of this gene to identify clades of Vibrio species. Within the 16S rRNA tree, we identify the putative informative bases responsible for polyphyly, and demonstrate the association of these positions with tree topology. We demonstrate that concatenation of 16S and 23S rRNA genes increases the number of informative nucleotide positions, thereby overcoming ambiguities in 16S rRNA-based phylogenetic reconstructions. Finally, we experimentally demonstrate that this approach considerably improves the differentiation and identification of Vibrio species in environmental samples.


Subject(s)
Phylogeny , RNA, Ribosomal, 16S , Vibrio , Vibrio/genetics , RNA, Ribosomal, 16S/genetics , rRNA Operon/genetics , RNA, Ribosomal, 23S/genetics , Genetic Variation
2.
Nat Ecol Evol ; 8(2): 267-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225425

ABSTRACT

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.


Subject(s)
Climate Change , Conservation of Natural Resources , Conservation of Natural Resources/methods , Europe , Ecosystem , Genetic Variation
3.
Genomics ; 111(6): 1547-1556, 2019 12.
Article in English | MEDLINE | ID: mdl-30423347

ABSTRACT

Vibrio harveyi is a Gram-negative pathogenic bacterium ubiquitously present in natural aquatic systems. Although environmental adaptability in V. harveyi may be enabled by profound reprogramming of gene expression previously observed during responses to starvation, suboptimal temperatures and other stress factors, the key characteristics of V. harveyi transcripts and operons, such as their boundaries and size as well as location of small RNA genes, remain largely unknown. To reveal the main features of the V. harveyi transcriptome, total RNA of this organism was analyzed by differential RNA sequencing (dRNA-seq). Analysis of the dRNA-seq data made it possible to define the primary transcriptome of V. harveyi along with cis-acting regulatory elements (riboswitches and leader sequences) and new genes. The latter encode a number of putative polypeptides and new phylogenetically conserved antisense RNAs potentially involved in the post-transcriptional control of gene expression.


Subject(s)
Aquatic Organisms , Gene Expression Regulation, Bacterial/physiology , RNA, Bacterial , Transcription, Genetic/physiology , Transcriptome/physiology , Vibrio , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Operon/physiology , RNA, Bacterial/biosynthesis , RNA, Bacterial/genetics , Sequence Analysis, RNA , Vibrio/genetics , Vibrio/metabolism
4.
Front Plant Sci ; 7: 1581, 2016.
Article in English | MEDLINE | ID: mdl-27826308

ABSTRACT

We quantified the degree to which the relationship between the geographic distribution of three major European tree species, Abies alba, Fagus sylvatica and Picea abies and January temperature (Tjan) has remained stable over the past 10,000 years. We used an extended data-set of fossil pollen records over Europe to reconstruct spatial variation in Tjan values for each 1000-year time slice between 10,000 and 3000 years BP (before present). We evaluated the relationships between the occurrences of the three species at each time slice and the spatially interpolated Tjan values, and compared these to their modern temperature ranges. Our results reveal that F. sylvatica and P. abies experienced Tjan ranges during the Holocene that differ from those of the present, while A. alba occurred over a Tjan range that is comparable to its modern one. Our data suggest the need for re-evaluation of the assumption of stable climate tolerances at a scale of several thousand years. The temperature range instability in our observed data independently validates similar results based exclusively on modeled Holocene temperatures. Our study complements previous studies that used modeled data by identifying variation in frequencies of occurrence of populations within the limits of suitable climate. However, substantial changes that were observed in the realized thermal niches over the Holocene tend to suggest that predicting future species distributions should not solely be based on modern realized niches, and needs to account for the past variation in the climate variables that drive species ranges.

5.
Syst Biol ; 65(3): 417-31, 2016 May.
Article in English | MEDLINE | ID: mdl-26911152

ABSTRACT

The evolution of organisms is crucially dependent on the evolution of intraspecific variation. Its interactions with selective agents in the biotic and abiotic environments underlie many processes, such as intraspecific competition, resource partitioning and, eventually, species formation. Nevertheless, comparative models of trait evolution neither allow explicit testing of hypotheses related to the evolution of intraspecific variation nor do they simultaneously estimate rates of trait evolution by accounting for both trait mean and variance. Here, we present a model of phenotypic trait evolution using a hierarchical Bayesian approach that simultaneously incorporates interspecific and intraspecific variation. We assume that species-specific trait means evolve under a simple Brownian motion process, whereas species-specific trait variances are modeled with Brownian or Ornstein-Uhlenbeck processes. After evaluating the power of the method through simulations, we examine whether life-history traits impact evolution of intraspecific variation in the Eriogonoideae (buckwheat family, Polygonaceae). Our model is readily extendible to more complex scenarios of the evolution of inter- and intraspecific variation and presents a step toward more comprehensive comparative models for macroevolutionary studies.


Subject(s)
Biological Evolution , Classification/methods , Bayes Theorem , Phenotype , Phylogeny , Polygonaceae/classification , Species Specificity
6.
Oecologia ; 176(2): 457-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25138258

ABSTRACT

Experimental evidence suggests that reproductive interference between heterospecifics can seriously affect individual fitness; support from field studies for such an effect has, however, remained scarce. We studied reproductive interference in 25 natural breeding ponds in an area where two ranid frogs, Rana dalmatina and Rana temporaria, co-occur. The breeding seasons of the two species usually overlap and males of both species are often found in amplexus with heterospecific females, even though matings between heterospecifics produce no viable offspring. We estimated species abundance ratios based on the number of clutches laid and evaluated fertilization success. In ponds with low spatial complexity and a species abundance ratio biased towards R. temporaria, the average fertilization success of R. dalmatina eggs decreased, while this relationship was not detectable in spatially more complex ponds. Fertilization success of R. temporaria did not decrease with increasing relative numbers of heterospecifics. This asymmetry in fitness effects of reproductive interference may be attributed to R. temporaria males being more competitive in scramble competition for females than R. dalmatina males. Our study is among the first to demonstrate that in natural breeding populations of vertebrates interference among heterospecifics has the potential to substantially lower reproductive success at the population level, which may in turn affect population dynamics.


Subject(s)
Fertilization/physiology , Rana temporaria/physiology , Ranidae/physiology , Animals , Breeding , Female , Hungary , Male , Ovum , Population Dynamics
7.
Glob Ecol Biogeogr ; 23(4): 414-424, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24790525

ABSTRACT

AIM: The origins of ecological diversity in continental species assemblages have long intrigued biogeographers. We apply phylogenetic comparative analyses to disentangle the evolutionary patterns of ecological niches in an assemblage of European birds. We compare phylogenetic patterns in trophic, habitat and climatic niche components. LOCATION: Europe. METHODS: From polygon range maps and handbook data we inferred the realized climatic, habitat and trophic niches of 405 species of breeding birds in Europe. We fitted Pagel's lambda and kappa statistics, and conducted analyses of disparity through time to compare temporal patterns of ecological diversification on all niche axes together. All observed patterns were compared with expectations based on neutral (Brownian) models of niche divergence. RESULTS: In this assemblage, patterns of phylogenetic signal (lambda) suggest that related species resemble each other less in regard to their climatic and habitat niches than they do in their trophic niche. Kappa estimates show that ecological divergence does not gradually increase with divergence time, and that this punctualism is stronger in climatic niches than in habitat and trophic niches. Observed niche disparity markedly exceeds levels expected from a Brownian model of ecological diversification, thus providing no evidence for past phylogenetic niche conservatism in these multivariate niches. Levels of multivariate disparity are greatest for the climatic niche, followed by disparity of the habitat and the trophic niches. MAIN CONCLUSIONS: Phylogenetic patterns in the three niche components differ within this avian assemblage. Variation in evolutionary rates (degree of gradualism, constancy through the tree) and/or non-random macroecological sampling probably lead here to differences in the phylogenetic structure of niche components. Testing hypotheses on the origin of these patterns requires more complete phylogenetic trees of the birds, and extended ecological data on different niche components for all bird species.

8.
Evolution ; 68(7): 1856-70, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24628685

ABSTRACT

The latitudinal diversity gradient (LDG) is one of the most striking and consistent biodiversity patterns across taxonomic groups. We investigate the species richness gradient in the buckwheat family, Polygonaceae, which exhibits a reverse LDG and is, thus, decoupled from dominant gradients of energy and environmental stability that increase toward the tropics and confound mechanistic interpretations. We test competing age and evolutionary diversification hypotheses, which may explain the diversification of this plant family over the past 70 million years. Our analyses show that the age hypothesis, which posits that clade richness is positively correlated with the ecological and evolutionary time since clade origin, fails to explain the richness gradient observed in Polygonaceae. However, an evolutionary diversification hypothesis is highly supported, with diversification rates being 3.5 times higher in temperate clades compared to tropical clades. We demonstrate that differences in rates of speciation, migration, and molecular evolution insufficiently explain the observed patterns of differential diversification rates. We suggest that reduced extinction rates in temperate clades may be associated with adaptive responses to selection, through which seed morphology and climatic tolerances potentially act to minimize risk in temporally variable environments. Further study is needed to understand causal pathways among these traits and factors correlated with latitude.


Subject(s)
Acclimatization/genetics , Evolution, Molecular , Fagopyrum/genetics , Seeds/genetics , Genetic Speciation , Genetic Variation , Phylogeny , Seeds/anatomy & histology
9.
Nature ; 506(7486): 47-51, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24499916

ABSTRACT

Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.


Subject(s)
Biodiversity , Diet , Herbivory , Nematoda , Plants , Animals , Arctic Regions , Bison/physiology , Cold Climate , Freezing , High-Throughput Nucleotide Sequencing , Horses/physiology , Mammoths/physiology , Nematoda/classification , Nematoda/genetics , Nematoda/isolation & purification , Plants/classification , Plants/genetics , Poaceae/genetics , Poaceae/growth & development , Soil , Time Factors , Yukon Territory
10.
BMC Evol Biol ; 14: 9, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24428910

ABSTRACT

BACKGROUND: Survival in microrefugia represents an important paradigm in phylogeography for explaining rapid postglacial re-colonization by species in temperate regions. Microrefugia may allow populations to persist in areas where the climatic conditions on the surface have become unfavourable. Caves generally contain stable microclimates and may represent microrefugia for species capable of exploiting both cave and surface habitats (troglophiles). We examine the phylogeography of the troglophilic North American vaejovid scorpion Pseudouroctonus reddelli using 1,993 base pairs of mitochondrial and nuclear DNA sequence data generated from 12 populations. We use (i) descriptive measures of genetic diversity and population genetics statistics, (ii) reconstructions of phylogeographical structure, spatial diffusion during diversification, and population sizes through time, and (iii) species distribution modelling to test predictions of the hypothesis that caves serve as microrefugia. We compare phylogeographical patterns in P. reddelli with other troglophilic species across the Edwards Plateau karst region of Texas. RESULTS: Results revealed high haplotype and nucleotide diversity and substantial phylogeographical structure, probably generated during the Pleistocene. Spatial diffusion occurred along the southern edge of the Edwards Plateau from multiple refugia along the Balcones Escarpment. There was little evidence for population and geographical expansion. Species distribution models predicted substantial reductions in suitable epigean habitat for P. reddelli at the Last Glacial Maximum (LGM). CONCLUSIONS: High genetic diversity, strong phylogeographical structure, diffusion from multiple refugia, and unfavourable climatic conditions at the LGM collectively support the hypothesis that caves served as microrefugia for P. reddelli. Similar patterns of genetic structure in P. reddelli and other troglophilic species across the Edwards Plateau karst region of Texas suggest that caves serving as microrefugia are important for the formation, maintenance, and future survival of troglophilic species in temperate karst regions.


Subject(s)
Caves , Scorpions/genetics , Animals , DNA, Mitochondrial/genetics , Ecosystem , Genetic Variation , Genetics, Population , Phylogeny , Phylogeography , Scorpions/classification , United States
11.
Nat Commun ; 5: 3118, 2014.
Article in English | MEDLINE | ID: mdl-24452245

ABSTRACT

Despite the recognized joint impact of climate and land cover change on facets of biodiversity and their associated functions, risk assessments have primarily evaluated impacts on species ranges and richness. Here we quantify the sensitivity of the functional structure of European avian assemblages to changes in both regional climate and land cover. We combine species range forecasts with functional-trait information. We show that species sensitivity to environmental change is randomly distributed across the functional tree of the European avifauna and that functionally unique species are not disproportionately threatened by 2080. However, projected species range changes will modify the mean species richness and functional diversity of bird diets and feeding behaviours. This will unequally affect the spatial structure of functional diversity, leading to homogenization across Europe. Therefore, global changes may alter the functional structure of species assemblages in the future in ways that need to be accounted for in conservation planning.


Subject(s)
Biodiversity , Birds/physiology , Climate Change , Animals , Europe , Feeding Behavior , Species Specificity
12.
Evolution ; 68(2): 453-65, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24102114

ABSTRACT

Fire has been proposed as a factor explaining the exceptional plant species richness found in Mediterranean regions. A fire response trait that allows plants to cope with frequent fire by either reseeding or resprouting could differentially affect rates of species diversification. However, little is known about the generality of the effects of differing fire response on species evolution. We study this question in the Restionaceae, a family that radiated in Southern Africa and Australia. These radiations occurred independently and represent evolutionary replicates. We apply Bayesian approaches to estimate trait-specific diversification rates and patterns of climatic niche evolution. We also compare the climatic heterogeneity of South Africa and Australia. Reseeders diversify faster than resprouters in South Africa, but not in Australia. We show that climatic preferences evolve more rapidly in reseeder lineages than in resprouters and that the optima of these climatic preferences differ between the two strategies. We find that South Africa is more climatically heterogeneous than Australia, independent of the spatial scale we consider. We propose that rapid shifts between states of the fire response trait promote speciation by separating species ecologically, but this only happens when the landscape is sufficiently heterogeneous.


Subject(s)
Evolution, Molecular , Ferns/genetics , Fires , Genetic Speciation , Genetic Variation , Quantitative Trait, Heritable , Australia , Climate , Selection, Genetic , South Africa
13.
Am Nat ; 182(6): 760-74, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24231537

ABSTRACT

Macroevolutionary and microevolutionary studies provide complementary explanations of the processes shaping the evolution of niche breadth. Macroevolutionary approaches scrutinize factors such as the temporal and spatial environmental heterogeneities that drive differentiation among species. Microevolutionary studies, in contrast, focus on the processes that affect intraspecific variability. We combine these perspectives by using macroevolutionary models in a comparative study of intraspecific variability. We address potential differences in rates of evolution of niche breadth and position in annual and perennial plants of the Eriogonoideae subfamily of the Polygonaceae. We anticipated higher rates of evolution in annuals than in perennials owing to differences in generation time that are paralleled by rates of molecular evolution. Instead, we found that perennial eriogonoid species present greater environmental tolerance (wider climate niche) than annual species. Niche breadth of perennial species has evolved two to four times faster than in annuals, while niche optimum has diversified more rapidly among annual species than among perennials. Niche breadth and average elevation of species are correlated. Moreover, niche breadth increases more rapidly with mean species elevation in perennials than in annuals. Our results suggest that both environmental gradients and life-history strategy influence rates and patterns of niche breadth evolution.


Subject(s)
Biological Evolution , Polygonaceae/physiology , Climate , Environment , Geography , Models, Biological , North America , Phylogeny , Population Dynamics , Species Specificity
14.
Philos Trans R Soc Lond B Biol Sci ; 368(1624): 20120479, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23836785

ABSTRACT

Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.


Subject(s)
Climate Change , Ecosystem , Trees/physiology , Arctic Regions , Demography , Greenland , Introduced Species , Models, Biological , Species Specificity , Trees/classification
15.
BMC Evol Biol ; 12: 212, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23122007

ABSTRACT

BACKGROUND: Adaptive radiation is the process by which a single ancestral species diversifies into many descendants adapted to exploit a wide range of habitats. The appearance of ecological opportunities, or the colonisation or adaptation to novel ecological resources, has been documented to promote adaptive radiation in many classic examples. Mutualistic interactions allow species to access resources untapped by competitors, but evidence shows that the effect of mutualism on species diversification can greatly vary among mutualistic systems. Here, we test whether the development of obligate mutualism with sea anemones allowed the clownfishes to radiate adaptively across the Indian and western Pacific oceans reef habitats. RESULTS: We show that clownfishes morphological characters are linked with ecological niches associated with the sea anemones. This pattern is consistent with the ecological speciation hypothesis. Furthermore, the clownfishes show an increase in the rate of species diversification as well as rate of morphological evolution compared to their closest relatives without anemone mutualistic associations. CONCLUSIONS: The effect of mutualism on species diversification has only been studied in a limited number of groups. We present a case of adaptive radiation where mutualistic interaction is the likely key innovation, providing new insights into the mechanisms involved in the buildup of biodiversity. Due to a lack of barriers to dispersal, ecological speciation is rare in marine environments. Particular life-history characteristics of clownfishes likely reinforced reproductive isolation between populations, allowing rapid species diversification.


Subject(s)
Adaptation, Physiological , Perciformes/parasitology , Phylogeny , Sea Anemones/physiology , Animals , Biological Evolution , Ecosystem , Genetic Variation , Host-Parasite Interactions , Perciformes/classification , Perciformes/genetics , Sea Anemones/classification , Species Specificity , Symbiosis
16.
Proc Biol Sci ; 279(1743): 3662-9, 2012 Sep 22.
Article in English | MEDLINE | ID: mdl-22719034

ABSTRACT

The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.


Subject(s)
Biological Evolution , Ecosystem , Perciformes/physiology , Animals , Biodiversity , Coral Reefs , Perciformes/classification , Perciformes/genetics , Phylogeny , Sequence Analysis, DNA , Species Specificity
17.
Trends Ecol Evol ; 25(12): 692-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20961648

ABSTRACT

Climate change poses a serious threat to species persistence. Effective modelling of evolutionary responses to rapid climate change is therefore essential. In this review we examine recent advances in phylogenetic comparative methods, techniques normally used to study adaptation over long periods, which allow them to be applied to the study of adaptation over shorter time scales. This increased applicability is largely due to the emergence of more flexible models of character evolution and the parallel development of molecular technologies that can be used to assess adaptive variation at loci scattered across the genome. The merging of phylogenetic and population genetic approaches to the study of adaptation has significant potential to advance our understanding of rapid responses to environmental change.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Climate Change , Animals , Ecosystem , Models, Biological , Phylogeny , Plants , Population Dynamics , Time Factors
18.
Proc Natl Acad Sci U S A ; 106 Suppl 2: 19723-8, 2009 Nov 17.
Article in English | MEDLINE | ID: mdl-19897732

ABSTRACT

Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D(2), +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.


Subject(s)
Biodiversity , Climate Change , Models, Biological , Trees/physiology , Species Specificity , Switzerland
19.
Trends Ecol Evol ; 23(3): 149-58, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18289716

ABSTRACT

Niche conservatism, the tendency of a species niche to remain unchanged over time, is often assumed when discussing, explaining or predicting biogeographical patterns. Unfortunately, there has been no basis for predicting niche dynamics over relevant timescales, from tens to a few hundreds of years. The recent application of species distribution models (SDMs) and phylogenetic methods to analysis of niche characteristics has provided insight to niche dynamics. Niche shifts and conservatism have both occurred within the last 100 years, with recent speciation events, and deep within clades of species. There is increasing evidence that coordinated application of these methods can help to identify species which likely fulfill one key assumption in the predictive application of SDMs: an unchanging niche. This will improve confidence in SDM-based predictions of the impacts of climate change and species invasions on species distributions and biodiversity.


Subject(s)
Ecosystem , Geography , Models, Theoretical , Phylogeny , Species Specificity
20.
Ecol Lett ; 11(4): 357-69, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18279357

ABSTRACT

The usefulness of species distribution models (SDMs) in predicting impacts of climate change on biodiversity is difficult to assess because changes in species ranges may take decades or centuries to occur. One alternative way to evaluate the predictive ability of SDMs across time is to compare their predictions with data on past species distributions. We use data on plant distributions, fossil pollen and current and mid-Holocene climate to test the ability of SDMs to predict past climate-change impacts. We find that species showing little change in the estimated position of their realized niche, with resulting good model performance, tend to be dominant competitors for light. Different mechanisms appear to be responsible for among-species differences in model performance. Confidence in predictions of the impacts of climate change could be improved by selecting species with characteristics that suggest little change is expected in the relationships between species occurrence and climate patterns.


Subject(s)
Climate , Ecosystem , Geography , Models, Biological , Trees , Europe , Fossils , Multivariate Analysis , Pollen
SELECTION OF CITATIONS
SEARCH DETAIL
...