Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Lancet Microbe ; 5(6): e581-e593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761816

ABSTRACT

BACKGROUND: A self-assembling SARS-CoV-2 WA-1 recombinant spike ferritin nanoparticle (SpFN) vaccine co-formulated with Army Liposomal Formulation (ALFQ) adjuvant containing monophosphoryl lipid A and QS-21 (SpFN/ALFQ) has shown protective efficacy in animal challenge models. This trial aims to assess the safety and immunogenicity of SpFN/ALFQ in a first-in-human clinical trial. METHODS: In this phase 1, randomised, double-blind, placebo-controlled, first-in-human clinical trial, adults were randomly assigned (5:5:2) to receive 25 µg or 50 µg of SpFN/ALFQ or saline placebo intramuscularly at day 1 and day 29, with an optional open-label third vaccination at day 181. Enrolment and randomisation occurred sequentially by group; randomisation was done by an interactive web-based randomisation system and only designated unmasked study personnel had access to the randomisation code. Adults were required to be seronegative and unvaccinated for inclusion. Local and systemic reactogenicity, adverse events, binding and neutralising antibodies, and antigen-specific T-cell responses were quantified. For safety analyses, exact 95% Clopper-Pearson CIs for the probability of any incidence of an unsolicited adverse event was computed for each group. For immunogenicity results, CIs for binary variables were computed using the exact Clopper-Pearson methodology, while CIs for geometric mean titres were based on 10 000 empirical bootstrap samples. Post-hoc, paired one-sample t tests were used to assess the increase in mean log-10 neutralising antibody titres between day 29 and day 43 (after the second vaccination) for the primary SARS-CoV-2 targets of interest. This trial is registered at ClinicalTrials.gov, NCT04784767, and is closed to new participants. FINDINGS: Between April 7, and June 29, 2021, 29 participants were enrolled in the study. 20 individuals were assigned to receive 25 µg SpFN/ALFQ, four to 50 µg SpFN/ALFQ, and five to placebo. Neutralising antibody responses peaked at day 43, 2 weeks after the second dose. Neutralisation activity against multiple omicron subvariants decayed more slowly than against the D614G or beta variants until 5 months after second vaccination for both dose groups. CD4+ T-cell responses were elicited 4 weeks after the first dose and were boosted after a second dose of SpFN/ALFQ for both dose groups. Neutralising antibody titres against early omicron subvariants and clade 1 sarbecoviruses were detectable after two immunisations and peaked after the third immunisation for both dose groups. Neutralising antibody titres against XBB.1.5 were detected after three vaccinations. Passive IgG transfer from vaccinated volunteers into Syrian golden hamsters controlled replication of SARS-CoV-1 after challenge. INTERPRETATION: SpFN/ALFQ was well tolerated and elicited robust and durable binding antibody and neutralising antibody titres against a broad panel of SARS-CoV-2 variants and other sarbecoviruses. FUNDING: US Department of Defense, Defense Health Agency.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ferritins , Lipid A , Liposomes , Nanoparticles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Double-Blind Method , Adult , Male , Female , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Nanoparticles/administration & dosage , Lipid A/analogs & derivatives , Lipid A/administration & dosage , Lipid A/pharmacology , Lipid A/immunology , Liposomes/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Saponins/administration & dosage , Saponins/immunology , Saponins/pharmacology , Saponins/adverse effects , Antibodies, Viral/blood , Middle Aged , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Adjuvants, Vaccine/administration & dosage , Antibodies, Neutralizing/blood , Young Adult , Nanovaccines
2.
Int J Infect Dis ; 145: 107079, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38697607

ABSTRACT

BACKGROUND: Limited epidemiologic studies have been conducted in Jordan describing the HIV epidemic. This study aimed to address this gap to inform HIV prevention and control. METHODS: A nationally-representative cross-sectional study was conducted among adults living with HIV in Jordan. Laboratory testing included HIV viral load and next-generation-sequencing-based clinical genotype. Log-binomial regression estimated risk ratios (RRs) and 95% confidence intervals (CIs). RESULTS: Among 231 (70%) participants, most were male (184/80%), and from Jordan (217/94%). Among 188 treatment-experienced-participants (>6 months), 165 (88%) were virally suppressed. High-level resistance was most frequent against nucleoside reverse transcriptase inhibitor (13/81%), and integrase-strand transfer inhibitor (INSTI) (10/62%) drugs among viremic (≥1000 HIV copies/mL) treatment-experienced participants with drug-resistant mutations (DRMs, n = 16). Common HIV subtypes (n = 43) were B (6/14%), A1 (5/12%), and CRF01_AE (5/12%); additionally, novel recombinant forms were detected. In multivariate analysis, independently higher risk for late diagnosis (n = 49) was observed with diagnosis through blood donation (vs check-up: RR 2.20, 95%CI 1.16-4.17) and earlier time-period of diagnosis (1986-2014 vs 2015-2021: RR 2.87, 95%CI 1.46-5.62). CONCLUSIONS: Late diagnosis and INSTI resistance endanger national HIV prevention and treatment in Jordan-high-level resistance to INSTI suggests therapeutic drug monitoring is needed for treatment efficacy and conservation of treatment options.


Subject(s)
Anti-HIV Agents , Drug Resistance, Viral , HIV Infections , Viral Load , Humans , Jordan/epidemiology , HIV Infections/epidemiology , HIV Infections/virology , HIV Infections/drug therapy , Male , Adult , Female , Cross-Sectional Studies , Drug Resistance, Viral/genetics , Middle Aged , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , HIV-1/drug effects , HIV-1/genetics , Young Adult , Genotype , Adolescent
3.
J Infect Dis ; 229(6): 1919-1925, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38451247

ABSTRACT

Current serologic tests for HIV screening and confirmation of infection present challenges to the adoption of HIV vaccines. The detection of vaccine-induced HIV-1 antibodies in the absence of HIV-1 infection, referred to as vaccine-induced seropositivity/seroreactivity, confounds the interpretation of test results, causing misclassification of HIV-1 status with potential affiliated stigmatization. For HIV vaccines to be widely adopted with high community confidence and uptake, tests are needed that are agnostic to the vaccination status of tested individuals (ie, positive only for true HIV-1 infection). Successful development and deployment of such tests will require HIV vaccine developers to work in concert with diagnostic developers. Such tests will need to match today's high-performance standards (accuracy, cost-effectiveness, simplicity) for use in vaccinated and unvaccinated populations, especially in low- and middle-income countries with high HIV burden. Herein, we discuss the challenges and strategies for developing modified serologic HIV tests for concurrent deployment with HIV vaccines.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Humans , HIV Infections/diagnosis , HIV Infections/prevention & control , AIDS Vaccines/immunology , HIV-1/immunology , HIV Antibodies/blood , HIV Antibodies/immunology , Serologic Tests/methods
4.
PLoS Pathog ; 19(12): e1011780, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38055771

ABSTRACT

Subtype B HIV-1 has been the primary driver of the HIV-1 epidemic in the United States (U.S.) for over forty years and is also a prominent subtype in the Americas, Europe, Australia, the Middle East and North Africa. In this study, the neutralization profiles of contemporary subtype B Envs from the U.S. were assessed to characterize changes in neutralization sensitivities over time. We generated a panel of 30 contemporary pseudoviruses (PSVs) and demonstrated continued diversification of subtype B Env from the 1980s up to 2018. Neutralization sensitivities of the contemporary subtype B PSVs were characterized using 31 neutralizing antibodies (NAbs) and were compared with strains from earlier in the HIV-1 pandemic. A significant reduction in Env neutralization sensitivity was observed for 27 out of 31 NAbs for the contemporary as compared to earlier-decade subtype B PSVs. A decline in neutralization sensitivity was observed across all Env domains; the NAbs that were most potent early in the pandemic suffered the greatest decline in potency over time. A meta-analysis demonstrated this trend across multiple subtypes. As HIV-1 Env diversification continues, changes in Env antigenicity and neutralization sensitivity should continue to be evaluated to inform the development of improved vaccine and antibody products to prevent and treat HIV-1.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , United States/epidemiology , HIV Antibodies , Neutralization Tests , HIV-1/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Antibodies, Neutralizing , Pandemics
5.
PLoS One ; 18(12): e0296054, 2023.
Article in English | MEDLINE | ID: mdl-38153953

ABSTRACT

BACKGROUND: The evidence for an increased incidence of sexually transmitted infections (STIs) among patients utilizing HIV pre-exposure prophylaxis (PrEP) has been inconsistent. We assessed the risk of incident STI while on PrEP compared to periods off PrEP among military service members starting PrEP. METHODS: Incidence rates of chlamydia, gonorrhea, syphilis, hepatitis C virus, and HIV were determined among military service members without HIV prescribed daily oral tenofovir disoproxil fumarate and emtricitabine for HIV PrEP from February 1, 2014 through June 10, 2016. Hazard ratios for incident STIs were calculated using an Anderson-Gill recurrent event proportional hazard regression model. RESULTS: Among 755 male service members, 477 (63%) were diagnosed with incident STIs (overall incidence 21.4 per 100 person-years). Male service members had a significantly lower risk of any STIs (adjusted hazard ratio (aHR) 0.21, 95% CI 0.11-0.40) while using PrEP compared to periods off PrEP after adjustment for socio-demographic characteristics, reasons for initiating PrEP, surveillance period prior to PrEP initiation, and the effect of PrEP on site and type of infection in multivariate analysis. However, when stratifying for anatomical site and type of infection, the risk of extragenital gonorrhea infection (pharyngeal NG: aHR 1.84, 95% CI 0.82-4.13, p = 0.30; rectal NG: aHR 1.23, 95% CI 0.60-2.51, p = 1.00) and extragenital CT infection (pharyngeal CT: aHR 2.30, 95% CI 0.46-11.46, p = 0.81; rectal CT: aHR 1.36, 95% CI 0.81-2.31, p = 0.66) was greater on PrEP compared to off PrEP although these values did not reach statistical significance. CONCLUSIONS: The data suggest entry into PrEP care reduced the overall risk of STIs following adjustment for anatomical site of STI and treatment. Service members engaged in PrEP services also receive more STI prevention counseling, which might contribute to decreases in STI risk while on PrEP.


Subject(s)
Gonorrhea , HIV Infections , Military Personnel , Pre-Exposure Prophylaxis , Sexual and Gender Minorities , Sexually Transmitted Diseases , Humans , Male , Gonorrhea/epidemiology , Gonorrhea/prevention & control , HIV Infections/epidemiology , HIV Infections/prevention & control , Homosexuality, Male , Sexually Transmitted Diseases/epidemiology , Sexually Transmitted Diseases/prevention & control
6.
EBioMedicine ; 94: 104683, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37413891

ABSTRACT

BACKGROUND: COVID-19 vaccines have been critical for protection against severe disease following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but gaps remain in our understanding of the immune responses that contribute to controlling subclinical and mild infections. METHODS: Vaccinated, active-duty US military service members were enrolled in a non-interventional, minimal-risk, observational study starting in May, 2021. Clinical data, serum, and saliva samples were collected from study participants and were used to characterise the humoral immune responses to vaccination and to assess its impact on clinical and subclinical infections, as well as virologic outcomes of breakthrough infections (BTI) including viral load and infection duration. FINDINGS: The majority of VIRAMP participants had received the Pfizer COVID-19 vaccine and by January, 2022, N = 149 had a BTI. The median BTI duration (PCR+ days) was 4 days and the interquartile range was 1-8 days. Participants that were nucleocapsid seropositive prior to their BTI had significantly higher levels of binding and functional antibodies to the spike protein, shorter median duration of infections, and lower median peak viral loads compared to seronegative participants. Furthermore, levels of neutralising antibody, ACE2 blocking activity, and spike-specific IgA measured prior to BTI also correlated with the duration of infection. INTERPRETATION: We extended previous findings and demonstrate that a subset of vaccine-induced humoral immune responses, along with nucleocapsid serostatus are associated with control of SARS-CoV-2 breakthrough infections in the upper airways. FUNDING: This work was funded by the DoD Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) in collaboration with the Defense Health Agency (DHA) COVID-19 funding initiative for the VIRAMP study.


Subject(s)
COVID-19 , Military Personnel , Humans , COVID-19 Vaccines , SARS-CoV-2 , Immunity, Humoral , Breakthrough Infections , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
7.
Lancet Infect Dis ; 23(10): 1175-1185, 2023 10.
Article in English | MEDLINE | ID: mdl-37390836

ABSTRACT

BACKGROUND: Zika virus infection is a threat to at-risk populations, causing major birth defects and serious neurological complications. Development of a safe and efficacious Zika virus vaccine is, therefore, a global health priority. Assessment of heterologous flavivirus vaccination is important given co-circulation of Japanese encephalitis virus and yellow fever virus with Zika virus. We investigated the effect of priming flavivirus naive participants with a licensed flavivirus vaccine on the safety and immunogenicity of a purified inactivated Zika vaccine (ZPIV). METHODS: This phase 1, placebo-controlled, double-blind trial was done at the Walter Reed Army Institute of Research Clinical Trials Center in Silver Spring, MD, USA. Eligible participants were healthy adults aged 18-49 years, with no detectable evidence of previous flavivirus exposure (by infection or vaccination), as measured by a microneutralisation assay. Individuals with serological evidence of HIV, hepatitis B, or hepatitis C infection were excluded, as were pregnant or breastfeeding women. Participants were recruited sequentially into one of three groups (1:1:1) to receive no primer, two doses of intramuscular Japanese encephalitis virus vaccine (IXIARO), or a single dose of subcutaneous yellow fever virus vaccine (YF-VAX). Within each group, participants were randomly assigned (4:1) to receive intramuscular ZPIV or placebo. Priming vaccinations were given 72-96 days before ZPIV. ZPIV was administered either two or three times, at days 0, 28, and 196-234. The primary outcome was occurrence of solicited systemic and local adverse events along with serious adverse events and adverse events of special interest. These data were analysed in all participants receiving at least one dose of ZPIV or placebo. Secondary outcomes included measurement of neutralizing antibody responses following ZPIV vaccination in all volunteers with available post-vaccination data. This trial is registered at ClinicalTrials.gov, NCT02963909. FINDINGS: Between Nov 7, 2016, and Oct 30, 2018, 134 participants were assessed for eligibility. 21 did not meet inclusion criteria, 29 met exclusion criteria, and ten declined to participate. 75 participants were recruited and randomly assigned. 35 (47%) of 75 participants were male and 40 (53%) were female. 25 (33%) of 75 participants identified as Black or African American and 42 (56%) identified as White. These proportions and other baseline characteristics were similar between groups. There were no statistically significant differences in age, gender, race, or BMI between those who did and did not opt into the third dose. All participants received the planned priming IXIARO and YF-VAX vaccinations, but one participant who received YF-VAX dropped out before receipt of the first dose of ZPIV. 50 participants received a third dose of ZPIV or placebo, including 14 flavivirus-naive people, 17 people primed with Japanese encephalitis virus vaccine, and 19 participants primed with yellow fever vaccine. Vaccinations were well tolerated across groups. Pain at the injection site was the only adverse event reported more frequently in participants who received ZPIV than in those who received placebo (39 [65%] of 60 participants, 95% CI 51·6-76·9 who received ZPIV vs three [21·4%] of 14 who received placebo; 4·7-50·8; p=0·006). No patients had an adverse event of special interest or serious adverse event related to study treatment. At day 57, the flavivirus-naive volunteers had an 88% (63·6-98·5, 15 of 17) seroconversion rate (neutralising antibody titre ≥1:10) and geometric mean neutralising antibody titre (GMT) against Zika virus of 100·8 (39·7-255·7). In the Japanese encephalitis vaccine-primed group, the day 57 seroconversion rate was 31·6% (95% CI 12·6-56·6, six of 19) and GMT was 11·8 (6·1-22·8). Participants primed with YF-VAX had a seroconversion rate of 25% (95% CI 8·7-49·1, five of 20) and GMT of 6·6 (5·2-8·4). Humoral immune responses rose substantially following a third dose of ZPIV, with seroconversion rates of 100% (69·2-100; ten of ten), 92·9% (66·1-99·8; 13 of 14), and 60% (32·2-83·7, nine of 15) and GMTs of 511·5 (177·6-1473·6), 174·2 (51·6-587·6), and 79 (19·0-326·8) in the flavivirus naive, Japanese encephalitis vaccine-primed, and yellow fever vaccine-primed groups, respectively. INTERPRETATION: We found ZPIV to be well tolerated in flavivirus naive and primed adults but that immunogenicity varied significantly according to antecedent flavivirus vaccination status. Immune bias towards the flavivirus antigen of initial exposure and the timing of vaccination may have impacted responses. A third ZPIV dose overcame much, but not all, of the discrepancy in immunogenicity. The results of this phase 1 clinical trial have implications for further evaluation of ZPIV's immunisation schedule and use of concomitant vaccinations. FUNDING: Department of Defense, Defense Health Agency; National Institute of Allergy and Infectious Diseases; and Division of Microbiology and Infectious Disease.


Subject(s)
Encephalitis Virus, Japanese , Japanese Encephalitis Vaccines , Viral Vaccines , Yellow Fever Vaccine , Zika Virus Infection , Zika Virus , Adult , Female , Humans , Male , Antibodies, Neutralizing , Antibodies, Viral , Double-Blind Method , Immunogenicity, Vaccine , Japanese Encephalitis Vaccines/adverse effects , Vaccines, Inactivated , Yellow Fever Vaccine/adverse effects , Yellow fever virus , Zika Virus Infection/prevention & control , Yellow Fever/prevention & control
8.
PLoS One ; 18(6): e0287576, 2023.
Article in English | MEDLINE | ID: mdl-37384714

ABSTRACT

OBJECTIVE: Validate the performance characteristics of two analyte specific, laboratory developed tests (LDTs) for the quantification of SARS-CoV-2 subgenomic RNA (sgRNA) and viral load on the Hologic Panther Fusion® using the Open Access functionality. METHODS: Custom-designed primers/probe sets targeting the SARS-CoV-2 Envelope gene (E) and subgenomic E were optimized. A 20-day performance validation following laboratory developed test requirements was conducted to assess assay precision, accuracy, analytical sensitivity/specificity, lower limit of detection and reportable range. RESULTS: Quantitative SARS-CoV-2 sgRNA (LDT-Quant sgRNA) assay, which measures intermediates of replication, and viral load (LDT-Quant VLCoV) assay demonstrated acceptable performance. Both assays were linear with an R2 and slope equal to 0.99 and 1.00, respectively. Assay precision was evaluated between 4-6 Log10 with a maximum CV of 2.6% and 2.5% for LDT-Quant sgRNA and LDT-Quant VLCoV respectively. Using negative or positive SARS-CoV-2 human nasopharyngeal swab samples, both assays were accurate (kappa coefficient of 1.00 and 0.92). Common respiratory flora and other viral pathogens were not detected and did not interfere with the detection or quantification by either assay. Based on 95% detection, the assay LLODs were 729 and 1206 Copies/mL for the sgRNA and VL load LDTs, respectively. CONCLUSION: The LDT-Quant sgRNA and LDT-Quant VLCoV demonstrated good analytical performance. These assays could be further investigated as alternative monitoring assays for viral replication; and thus, medical management in clinical settings which could inform isolation/quarantine requirements.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Subgenomic RNA , Viral Load , Biological Assay , RNA
9.
Epidemics ; 43: 100691, 2023 06.
Article in English | MEDLINE | ID: mdl-37267710

ABSTRACT

Optimization of control measures for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in high-risk institutional settings (e.g., prisons, nursing homes, or military bases) depends on how transmission dynamics in the broader community influence outbreak risk locally. We calibrated an individual-based transmission model of a military training camp to the number of RT-PCR positive trainees throughout 2020 and 2021. The predicted number of infected new arrivals closely followed adjusted national incidence and increased early outbreak risk after accounting for vaccination coverage, masking compliance, and virus variants. Outbreak size was strongly correlated with the predicted number of off-base infections among staff during training camp. In addition, off-base infections reduced the impact of arrival screening and masking, while the number of infectious trainees upon arrival reduced the impact of vaccination and staff testing. Our results highlight the importance of outside incidence patterns for modulating risk and the optimal mixture of control measures in institutional settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Incidence , Disease Outbreaks , Vaccination
10.
J Public Health (Oxf) ; 45(3): 748-752, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37132356

ABSTRACT

BACKGROUND: In 2020, preventive measures were implemented to mitigate the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among 600-700 recruits arriving weekly at a basic combat training (BCT) facility in the southern United States. Trainees were sorted into companies and platoons (cocoons) at arrival, tested, quarantined for 14 days with daily temperature and respiratory-symptom monitoring and retested before release into larger groups for training where symptomatic testing was conducted. Nonpharmaceutical measures, such as masking, and social distancing, were maintained throughout quarantine and BCT. We assessed for SARS-CoV-2 transmission in the quarantine milieu. METHODS: Nasopharyngeal (NP) swabs were collected at arrival and at the end of quarantine and blood specimens at both timepoints and at the end of BCT. Epidemiological characteristics were analyzed for transmission clusters identified from whole-genome sequencing of NP samples. RESULTS: Among 1403 trainees enrolled from 25 August to 7 October 2020, epidemiological analysis identified three transmission clusters (n = 20 SARS-CoV-2 genomes) during quarantine, which spanned five different cocoons. However, SARS-CoV-2 incidence decreased from 2.7% during quarantine to 1.5% at the end of BCT; prevalence at arrival was 3.3%. CONCLUSIONS: These findings suggest layered SARS-CoV-2 mitigation measures implemented during quarantine minimized the risk of further transmission in BCT.


Subject(s)
COVID-19 , Military Personnel , Humans , United States/epidemiology , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Quarantine , COVID-19 Testing
11.
AIDS Res Hum Retroviruses ; 39(9): 485-494, 2023 09.
Article in English | MEDLINE | ID: mdl-36825536

ABSTRACT

Herpes simplex virus type 2 (HSV-2) is common globally and contributes significantly to the risk of acquiring HIV-1, yet these two sexually transmitted infections have not been sufficiently characterized for sexual and gender minorities (SGM) across Sub-Saharan Africa. To help fill this gap, we performed a retrospective study using plasma and serum samples from 183 SGM enrolled at the Lagos site of the TRUST/RV368 cohort in Nigeria, assayed them for HSV-2 antibodies with the Kalon ELISA and plasma cytokines and chemokines with Luminex, and correlated the findings with HIV-1 viral loads (VLs) and CD4 counts. We found an overall HSV-2 prevalence of 36.6% (49.5% and 23.9% among SGM with and without HIV-1, respectively, p < .001). Moreover, HSV-2-positive status was associated with high circulating concentrations of CCL11 among antiretroviral therapy-treated (p = .031) and untreated (p = .015) participants, and with high concentrations of CCL2 in the untreated group (p = .004), independent of VL. Principal component analysis revealed a strong association of cytokines with HIV-1 VL independent of HSV-2 status. In conclusion, our study finds that HSV-2 prevalence among SGM with HIV-1 is twice as high than HSV-2 prevalence among SGM without HIV-1 in Lagos and suggests that this is associated with higher levels of certain systemic cytokines. Additional work is needed to further characterize the relationship between HSV-2 and HIV-1 in SGM and help develop targeted therapies for coinfected individuals.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Herpes Genitalis , Herpes Simplex , Sexual and Gender Minorities , Humans , Herpesvirus 2, Human , HIV Infections/complications , HIV Infections/epidemiology , Herpes Genitalis/epidemiology , Cytokines , Prevalence , Nigeria/epidemiology , Retrospective Studies , HIV Seropositivity/epidemiology , Herpes Simplex/epidemiology
12.
PLoS One ; 18(1): e0280783, 2023.
Article in English | MEDLINE | ID: mdl-36662886

ABSTRACT

BACKGROUND: Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are the most common bacterial causes of sexually transmitted infection (STI) in the United States (US). The purpose of this study was to determine the frequency of reinfection during a six-month study period and to evaluate the retesting interval for those infected with CT or NG. METHODS: We conducted a prospective, six-month follow-up study among US military personnel with new onset, laboratory-confirmed CT or NG, recruited from an STI clinic at a large military base from January 2018 to January 2020. Each participant was randomly assigned to one of four groups, which differed only by the timing of the first study-associated follow-up visit after CT or NG diagnosis. RESULTS: Of the 347 initially recruited into the study, 267 participants completed a follow-up visit prior to their scheduled, final visit 6 months after initial infection. The median age at enrollment was 22 years and 41.0% were female. There were 32 (12.0%) reinfections (30 CT and 2 NG) after treatment of an index diagnosis of CT or NG within the six-month study period. Six of the CT reinfections were only detected at the final visit. A review of medical records revealed additional CT and NG reinfections. The probability of detecting a reinfection did not vary significantly by timing of follow-up. CONCLUSIONS: The likelihood of detecting CT or NG reinfection did not differ according to time of follow up visit among study participants, thus supporting CDC guidance to retest three months post treatment. Efforts should continue to focus on STI prevention and risk reduction.


Subject(s)
Chlamydia Infections , Gonorrhea , Sexually Transmitted Diseases , Humans , Female , United States/epidemiology , Male , Gonorrhea/diagnosis , Gonorrhea/epidemiology , Gonorrhea/prevention & control , Chlamydia trachomatis , Reinfection , Follow-Up Studies , Prospective Studies , Chlamydia Infections/diagnosis , Chlamydia Infections/epidemiology , Chlamydia Infections/prevention & control , Sexually Transmitted Diseases/prevention & control , Neisseria gonorrhoeae , Prevalence
13.
Mil Med ; 188(1-2): 158-165, 2023 01 04.
Article in English | MEDLINE | ID: mdl-34865097

ABSTRACT

INTRODUCTION: At the start of the coronavirus disease 2019 (COVID-19) pandemic, Walter Reed Army Institute of Research (WRAIR) mobilized to rapidly conduct medical research to detect, prevent, and treat the disease in order to minimize the impact of the pandemic on the health and readiness of U.S. Forces. WRAIR's major efforts included the development of the Department of Defense (DoD) COVID-19 vaccine candidate, researching novel drug therapies and monoclonal antibodies, refining and scaling-up diagnostic capabilities, evaluating the impact of viral diversity, assessing the behavioral health of Soldiers, supporting U.S. DoD operational forces overseas, and providing myriad assistance to allied nations. WRAIR personnel have also filled key roles within the whole of government response to the pandemic. WRAIR had to overcome major pandemic-related operational challenges in order to quickly execute a multimillion-dollar portfolio of COVID-19 research. Consequently, the organization learned lessons that could benefit other leaders of medical research organizations preparing for the next pandemic. MATERIALS AND METHODS: We identified lessons learned using a qualitative thematic analysis of 76 observation/recommendation pairs from across the organization. These lessons learned were organized under the Army's four pillars of readiness (staffing, training, equipping, and leadership development). To this framework, we added organizing and leading to best capture our experiences within the context of pandemic response. RESULTS: The major lessons learned for organizing were: (1) the pandemic created a need to rapidly pivot to new scientific priorities; (2) necessary health and safety precautions disrupted the flow of normal science and put programs at risk of missing milestones; (3) relationships with partners and allies facilitated medical diplomacy and advancement of U.S. national military and economic goals; and (4) a successful response required interoperability within and across multiple organizations. For equipping: (1) existing infrastructure lacked sufficient capacity and technical capability to allow immediate countermeasure development; (2) critical supply chains were strained; and (3) critical information system function and capacity were suddenly insufficient under maximum remote work. For staffing and training: (1) successful telework required rapid shifts in management, engagement, and accountability methods; and (2) organizational policies and processes had to adapt quickly to support remote staffing. For leading and leadership development (1) engaged, hopeful, and empathetic leadership made a difference; and (2) the workforce benefitted from concerted leadership communication that created a shared understanding of shifting priorities as well as new processes and procedures. CONCLUSIONS: An effective pandemic response requires comprehensive institutional preparedness that facilitates flexibility and surge capacity. The single most important action leaders of medical research organizations can take to prepare for the next pandemic is to develop a quick-reaction force that would activate under prespecified criteria to manage reprioritization of all science and support activities to address pandemic response priorities at the velocity of relevance.


Subject(s)
COVID-19 , Military Personnel , Humans , Pandemics/prevention & control , COVID-19 Vaccines , Academies and Institutes
14.
Front Immunol ; 13: 1047277, 2022.
Article in English | MEDLINE | ID: mdl-36505432

ABSTRACT

A major barrier in the use of humanized mice as models of HIV-1 (HIV) infection is the inadequate generation of virus-specific antibody responses. Humanized DRAGA (hDRAGA) mice generate antigen-specific class switched antibodies to several pathogens, but whether they do so in HIV infection and the extent to which their secondary lymphoid tissues (sLT) support germinal center responses is unknown. hDRAGA mice were evaluated for their ability to support HIV replication, generate virus-specific antibody responses, develop splenocyte subsets, and organize sLT architecture. hDRAGA mice supported persistent HIV replication and developed modest levels of gp41-specific human IgM and IgG. Spleens from uninfected and HIV infected hDRAGA mice contained differentiated B and CD4+ T cell subsets including germinal center (GC) B cells and T follicular helper cells (TFH); relative expansions of TFH and CD8+ T cells, but not GC B cells, occurred in HIV-infected hDRAGA mice compared to uninfected animals. Immunofluorescent staining of spleen and mesenteric lymph node sections demonstrated atypical morphology. Most CD4+ and CD8+ T cells resided within CD20hi areas. CD20hi areas lacked canonical germinal centers, as defined by staining for IgD-Ki67+cells. No human follicular dendritic cells (FDC) were detected. Mouse FDC were distributed broadly throughout both CD20hi and CD20lo regions of sLT. HIV RNA particles were detected by in situ hybridization within CD20+ areas and some co-localized with mouse FDC. Viral RNA+ cells were more concentrated within CD20hi compared to CD20lo areas of sLT, but differences were diminished in spleen and eliminated in mesenteric lymph nodes when adjusted for CD4+ cell frequency. Thus, hDRAGA mice recapitulated multiple aspects of HIV pathogenesis including HIV replication, relative expansions in TFH and CD8+ T cells, and modest HIV-specific antibody production. Nevertheless, classical germinal center morphology in sLT was not observed, which may account for the inefficient expansion of GC B cells and generation of low titer human antibody responses to HIV-1 in this model.


Subject(s)
HIV Infections , HIV-1 , Mice , Animals , CD8-Positive T-Lymphocytes , Germinal Center , HIV Antibodies
15.
PLoS One ; 17(11): e0276729, 2022.
Article in English | MEDLINE | ID: mdl-36342921

ABSTRACT

Combining diagnostic specimens into pools has been considered as a strategy to augment throughput, decrease turnaround time, and leverage resources. This study utilized a multi-parametric approach to assess optimum pool size, impact of automation, and effect of nucleic acid amplification chemistries on the detection of SARS-CoV-2 RNA in pooled samples for surveillance testing on the Hologic Panther Fusion® System. Dorfman pooled testing was conducted with previously tested SARS-CoV-2 nasopharyngeal samples using Hologic's Aptima® and Panther Fusion® SARS-CoV-2 Emergency Use Authorization assays. A manual workflow was used to generate pool sizes of 5:1 (five samples: one positive, four negative) and 10:1. An automated workflow was used to generate pool sizes of 3:1, 4:1, 5:1, 8:1 and 10:1. The impact of pool size, pooling method, and assay chemistry on sensitivity, specificity, and lower limit of detection (LLOD) was evaluated. Both the Hologic Aptima® and Panther Fusion® SARS-CoV-2 assays demonstrated >85% positive percent agreement between neat testing and pool sizes ≤5:1, satisfying FDA recommendation. Discordant results between neat and pooled testing were more frequent for positive samples with CT>35. Fusion® CT (cycle threshold) values for pooled samples increased as expected for pool sizes of 5:1 (CT increase of 1.92-2.41) and 10:1 (CT increase of 3.03-3.29). The Fusion® assay demonstrated lower LLOD than the Aptima® assay for pooled testing (956 vs 1503 cp/mL, pool size of 5:1). Lowering the cut-off threshold of the Aptima® assay from 560 kRLU (manufacturer's setting) to 350 kRLU improved the assay sensitivity to that of the Fusion® assay for pooled testing. Both Hologic's SARS-CoV-2 assays met the FDA recommended guidelines for percent positive agreement (>85%) for pool sizes ≤5:1. Automated pooling increased test throughput and enabled automated sample tracking while requiring less labor. The Fusion® SARS-CoV-2 assay, which demonstrated a lower LLOD, may be more appropriate for surveillance testing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Automation , Sensitivity and Specificity
16.
PLoS Comput Biol ; 18(10): e1010489, 2022 10.
Article in English | MEDLINE | ID: mdl-36206315

ABSTRACT

Like other congregate living settings, military basic training has been subject to outbreaks of COVID-19. We sought to identify improved strategies for preventing outbreaks in this setting using an agent-based model of a hypothetical cohort of trainees on a U.S. Army post. Our analysis revealed unique aspects of basic training that require customized approaches to outbreak prevention, which draws attention to the possibility that customized approaches may be necessary in other settings, too. In particular, we showed that introductions by trainers and support staff may be a major vulnerability, given that those individuals remain at risk of community exposure throughout the training period. We also found that increased testing of trainees upon arrival could actually increase the risk of outbreaks, given the potential for false-positive test results to lead to susceptible individuals becoming infected in group isolation and seeding outbreaks in training units upon release. Until an effective transmission-blocking vaccine is adopted at high coverage by individuals involved with basic training, need will persist for non-pharmaceutical interventions to prevent outbreaks in military basic training. Ongoing uncertainties about virus variants and breakthrough infections necessitate continued vigilance in this setting, even as vaccination coverage increases.


Subject(s)
COVID-19 , Military Personnel , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Cohort Studies
17.
Front Immunol ; 13: 901217, 2022.
Article in English | MEDLINE | ID: mdl-35711449

ABSTRACT

Fc-mediated virus entry has been observed for many viruses, but the characterization of this activity in convalescent plasma against SARS-CoV-2 Variants of Concern (VOC) is undefined. In this study, we evaluated Fc-mediated viral entry (FVE) on FcγRIIa-expressing HEK293 cells in the presence of SARS-CoV-2 convalescent plasma and compared it with SARS-CoV-2 pseudovirus neutralization using ACE2-expressing HEK293 cells. The plasma were collected early in the pandemic from 39 individuals. We observed both neutralization and FVE against the infecting Washington SARS-CoV-2 strain for 31% of plasmas, neutralization, but not FVE for 61% of plasmas, and no neutralization or FVE for 8% of plasmas. Neutralization titer correlated significantly with the plasma dilution at which maximum FVE was observed, indicating Fc-mediated uptake peaked as neutralization potency waned. While total Spike-specific plasma IgG levels were similar between plasma that mediated FVE and those that did not, Spike-specific plasma IgM levels were significantly higher in plasma that did not mediate FVE. Plasma neutralization titers against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) VOC were significantly lower than titers against the Washington strain, while plasma FVE activity against the VOC was either higher or similar. This is the first report to demonstrate a functional shift in convalescent plasma antibodies from neutralizing and FVE-mediating against the earlier Washington strain, to an activity mediating only FVE and no neutralization activity against the emerging VOC, specifically the Beta (B.1.351) and Gamma (P.1) VOC. It will be important to determine the in vivo relevance of these findings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/therapy , HEK293 Cells , Humans , Immunization, Passive , Immunoglobulin Fc Fragments , Spike Glycoprotein, Coronavirus , Virus Internalization , COVID-19 Serotherapy
18.
J Infect Dis ; 226(10): 1743-1752, 2022 11 11.
Article in English | MEDLINE | ID: mdl-35543272

ABSTRACT

BACKGROUND: Laboratory screening for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key mitigation measure to avoid the spread of infection among recruits starting basic combat training in a congregate setting. Because viral nucleic acid can be detected persistently after recovery, we evaluated other laboratory markers to distinguish recruits who could proceed with training from those who were infected. METHODS: Recruits isolated for coronavirus disease 2019 (COVID-19) were serially tested for SARS-CoV-2 subgenomic ribonucleic acid (sgRNA), and viral load (VL) by reverse-transcriptase polymerase chain reaction (RT-PCR), and for anti- SARS-CoV-2. Cluster and quadratic discriminant analyses of results were performed. RESULTS: Among 229 recruits isolated for COVID-19, those with a RT-PCR cycle threshold >30.49 (sensitivity 95%, specificity 96%) or having sgRNA log10 RNA copies/mL <3.09 (sensitivity and specificity 96%) at entry into isolation were likely SARS-CoV-2 uninfected. Viral load >4.58 log10 RNA copies/mL or anti-SARS-CoV-2 signal-to-cutoff ratio <1.38 (VL: sensitivity and specificity 93%; anti-SARS-CoV-2: sensitivity 83%, specificity 79%) had comparatively lower sensitivity and specificity when used alone for discrimination of infected from uninfected. CONCLUSIONS: Orthogonal laboratory assays used in combination with RT-PCR may have utility in determining SARS-CoV-2 infection status for decisions regarding isolation.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , COVID-19 Testing , Sensitivity and Specificity , RNA , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction
19.
Vaccines (Basel) ; 10(5)2022 May 04.
Article in English | MEDLINE | ID: mdl-35632473

ABSTRACT

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.

20.
Open Forum Infect Dis ; 8(9): ofab407, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34514020

ABSTRACT

BACKGROUND: Significant variability exists in the application of infection control policy throughout the US Army initial entry training environment. To generate actionable information for the prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) transmission among new recruits, active enhanced surveillance was conducted for evidence of and exposure to SARS-CoV-2/COVID-19. METHODS: We serially tested recruits with a reverse transcriptase polymerase chain reaction (RT-PCR) COVID-19 and/or total antibody to SARS-CoV-2 tests at days 0, 14, and week 10 upon arrival for basic combat training at a location in the Southern United States. RESULTS: Among 1403 recruits who were enrolled over a 6-week period from August 25 through October 11, 2020, 84 recruits tested positive by RT-PCR, with more than half (55%, 46/84) testing positive at arrival and almost two-thirds (63%, 53/84) also testing seropositive at arrival. Similarly, among an overall 146 recruits who tested seropositive for SARS-CoV-2 during the period of observation, a majority (86%) tested seropositive at arrival; no hospitalizations were observed among seropositive recruits, and antibody response increased at week 10. CONCLUSIONS: These findings that suggest serological testing may complement current test-based measures and provide another tool to incorporate in COVID-19 mitigation measures among trainees in the US Army.

SELECTION OF CITATIONS
SEARCH DETAIL
...