Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
1.
Diagn Microbiol Infect Dis ; 110(1): 116421, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972132

ABSTRACT

We assessed the performance of three different multiplex lateral flow assays manufactured by SureScreen, Microprofit and Goldsite which provide results for influenza, respiratory syncytial virus (RSV) and SARS-CoV-2. Between 4 April and 20 October 2023, 1646 patients 6 months and older presenting to an outpatient department of a hospital in Hong Kong with ≥2 symptoms or signs of an acute respiratory illness were enrolled. The point estimates for all three multiplex tests had sensitivity >80% for influenza A and SARS-CoV-2 compared to PCR, and the tests manufactured by Microprofit and Goldsite had sensitivity >84% to detect RSV. Specificity was >97% for all three tests except for the SureScreen test which had specificity 86.2% (95% CI: 83.9% to 88.3%) for influenza A. Sensitivity was lower than reported by the manufacturers, resulting in a higher risk of false negatives. The three multiplex tests performed better in patients with high viral loads.

2.
Nat Commun ; 15(1): 5593, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961067

ABSTRACT

Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.


Subject(s)
Antibodies, Viral , Cross Reactions , Influenza A Virus, H3N2 Subtype , Influenza, Human , Neuraminidase , Pandemics , Neuraminidase/immunology , Neuraminidase/genetics , Animals , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Influenza A Virus, H3N2 Subtype/immunology , Female , Cross Reactions/immunology , Mice , Influenza, Human/immunology , Influenza, Human/epidemiology , Influenza, Human/virology , Aged , Influenza A Virus, H2N2 Subtype/immunology , Influenza A Virus, H2N2 Subtype/genetics , Male , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Birds/virology , Middle Aged , Influenza in Birds/epidemiology , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza A Virus, H9N2 Subtype/immunology , Adult , Viral Proteins/immunology , Viral Proteins/genetics
3.
Virol J ; 21(1): 153, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972989

ABSTRACT

Wild waterfowl serve as a reservoir of some astroviruses. Fecal samples from wild waterfowl collected at Hong Kong's Marshes were tested using pan-astrovirus reverse transcription-PCR. Positive samples underwent subsequent host identification using DNA barcoding. Based on deduced partial sequences, noteworthy samples from three astrovirus groups (mammalian, avian and unclassified astroviruses) were further analyzed by next-generation sequencing. One sample of Avastrovirus 4 clade, MP22-196, had a nearly complete genome identified. The results of ORF2 phylogenetic analysis and genetic distance analysis indicate that Avastrovirus 4 is classified as a distinct subclade within Avastrovirus. MP22-196 has typical astrovirus genome characteristics. The unique characteristics and potential differences of this genome, compared to other avian astrovirus sequences, involve the identification of a modified sgRNA sequence situated near the ORF2 start codon, which precedes the ORF1b stop codon. Additionally, the 3' UTR of MP22-196 is shorter than other avian astroviruses. This study expands our understanding of the Avastrovirus 4 clade.


Subject(s)
Astroviridae Infections , Birds , Feces , Genetic Variation , Genome, Viral , Phylogeny , Animals , Hong Kong , Birds/virology , Feces/virology , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Animals, Wild/virology , Bird Diseases/virology , High-Throughput Nucleotide Sequencing , Avastrovirus/genetics , Avastrovirus/classification , Avastrovirus/isolation & purification , RNA, Viral/genetics , Open Reading Frames , Astroviridae/genetics , Astroviridae/isolation & purification , Astroviridae/classification
5.
Influenza Other Respir Viruses ; 18(5): e13309, 2024 May.
Article in English | MEDLINE | ID: mdl-38725111

ABSTRACT

BACKGROUND: The newly emerged SARS-CoV-2 possesses shared antigenic epitopes with other human coronaviruses. We investigated if COVID-19 vaccination or SARS-CoV-2 infection may boost cross-reactive antibodies to other human coronaviruses. METHODS: Prevaccination and postvaccination sera from SARS-CoV-2 naïve healthy subjects who received three doses of the mRNA vaccine (BioNTech, BNT) or the inactivated vaccine (CoronaVac, CV) were used to monitor the level of cross-reactive antibodies raised against other human coronaviruses by enzyme-linked immunosorbent assay. In comparison, convalescent sera from COVID-19 patients with or without prior vaccination history were also tested. Pseudoparticle neutralization assay was performed to detect neutralization antibody against MERS-CoV. RESULTS: Among SARS-CoV-2 infection-naïve subjects, BNT or CV significantly increased the anti-S2 antibodies against Betacoronaviruses (OC43 and MERS-CoV) but not Alphacoronaviruses (229E). The prevaccination antibody response to the common cold human coronaviruses did not negatively impact the postvaccination antibody response to SARS-CoV-2. Cross-reactive antibodies that binds to the S2 protein of MERS-CoV were similarly detected from the convalescent sera of COVID-19 patients with or without vaccination history. However, these anti-S2 antibodies do not possess neutralizing activity in MERS-CoV pseudoparticle neutralization tests. CONCLUSIONS: Our results suggest that SARS-CoV-2 infection or vaccination may potentially modulate population immune landscape against previously exposed or novel human coronaviruses. The findings have implications for future sero-epidemiological studies on MERS-CoV.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Reactions , SARS-CoV-2 , Humans , Cross Reactions/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Adult , Male , Female , Vaccination , Middle Aged , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Neutralization Tests , Middle East Respiratory Syndrome Coronavirus/immunology , Young Adult , mRNA Vaccines/immunology
6.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798684

ABSTRACT

Background: Studies have reported that repeated annual vaccination may influence the effectiveness of the influenza vaccination in the current season. The mechanisms underlying these differences are unclear but might include "focusing" of the adaptive immune response to older strains. Methods: We established a 5-year randomized placebo-controlled trial of repeated influenza vaccination (Flublok, Sanofi Pasteur) in adults 18-45 years of age. Participants were randomized equally between five groups, with planned annual receipt of vaccination (V) or saline placebo (P) as follows: P-P-P-P-V, P-P-P-V-V, P-P-V-V-V, P-V-V-V-V, or V-V-V-VV. Serum samples were collected each year just before vaccination and after 30 and 182 days. A subset of sera were tested by hemagglutination inhibition assays, focus reduction neutralization tests and enzyme-linked immunosorbent assays against vaccine strains. Results: From 23 October 2020 through 11 March 2021 we enrolled and randomized 447 adults. We selected sera from 95 participants at five timepoints from the first two study years for testing. Among vaccinated individuals, antibody titers increased between days 0 and 30 against each of the vaccine strains, with substantial increases for first-time vaccinees and smaller increases for repeat vaccinees, who had higher pre-vaccination titers in year 2. There were statistically significant reductions in the proportion of participants achieving a four-fold greater rise in antibody titer for the repeat vaccinees for A(H1N1), B/Victoria and B/Yamagata, but not for influenza A(H3N2). There were no statistically significant differences between groups in geometric mean titers at day 30 or the proportions of participants with antibody titers ≥40 at day 30 for any of the vaccine strains. Conclusions: In the first two years, repeat vaccinees and first-time vaccinees had similar post-vaccination geometric mean titers to all four vaccine strains, indicative of similar levels of clinical protection. The vaccine strains of A(H1N1) and A(H3N2) were updated in year 2, providing an opportunity to explore antigenic distances between those strains in humans in subsequent years.

8.
Nat Commun ; 15(1): 3210, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615070

ABSTRACT

Cross-reactive antibodies with Fc receptor (FcR) effector functions may mitigate pandemic virus impact in the absence of neutralizing antibodies. In this exploratory study, we use serum from a randomized placebo-controlled trial of seasonal trivalent influenza vaccination in children (NCT00792051) conducted at the onset of the 2009 H1N1 pandemic (pH1N1) and monitored for infection. We found that seasonal vaccination increases pH1N1 specific antibodies and FcR effector functions. Furthermore, prospective baseline antibody profiles after seasonal vaccination, prior to pH1N1 infection, show that unvaccinated uninfected children have elevated ADCC effector function, FcγR3a and FcγR2a binding antibodies to multiple pH1N1 proteins, past seasonal and avian (H5, H7 and H9) strains. Whereas, children that became pH1N1 infected after seasonal vaccination have antibodies focussed to seasonal strains without FcR functions, and greater aggregated HA-specific profiles for IgM and IgG3. Modeling to predict infection susceptibility, ranked baseline hemagglutination antibody inhibition as the highest contributor to lack of pH1N1 infection, in combination with features that include pH1-IgG1, H1-stem responses and FcR binding to seasonal vaccine and pH1 proteins. Thus, seasonal vaccination can have benefits against pandemic influenza viruses, and some children already have broadly reactive antibodies with Fc potential without vaccination and may be considered 'elite influenza controllers'.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Child , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Prospective Studies , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin G
9.
Water Res ; 255: 121513, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555782

ABSTRACT

The wastewater surveillance network successfully established for COVID-19 showed great potential to monitor other infectious viruses, such as norovirus, rotavirus and mpox virus. In this study, we established and validated detection methods for these viruses in wastewater. We developed a supernatant-based method to detect RNA viruses from wastewater samples and applied it to the monthly diarrhea viruses (norovirus genogroup I & II, and rotavirus) surveillance in wastewater treatment plants (WWTPs) at a city-wide level for 16 months. Significant correlations were observed between the diarrhea viruses concentrations in wastewater and detection rates in faecal specimens by clinical surveillance. The highest norovirus concentration in wastewater was obtained in winter, consistent with the seasonal pattern of norovirus outbreak in Hong Kong. Additionally, we established a pellet-based method to monitor DNA viruses in wastewater and detected weak signals for mpox virus in wastewater from a WWTP serving approximately 16,700 people, when the first mpox patient in Hong Kong was admitted to the hospital within the catchment area. Genomic sequencing provided confirmatory evidence for the validity of the results. Our findings emphasized the efficacy of the wastewater surveillance network in WWTPs as a cost-effective tool to track the transmission trend of diarrhea viruses and to provide sensitive detection of novel emerging viruses such as mpox virus in low-prevalence areas. The developed methods and surveillance results provide confidence for establishing robust wastewater surveillance programs to control infectious diseases in the post-pandemic era.

10.
Virol J ; 21(1): 70, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38515117

ABSTRACT

Since the emergence of SARS-CoV-2, different variants and subvariants successively emerged to dominate global virus circulation as a result of immune evasion, replication fitness or both. COVID-19 vaccines continue to be updated in response to the emergence of antigenically divergent viruses, the first being the bivalent RNA vaccines that encodes for both the Wuhan-like and Omicron BA.5 subvariant spike proteins. Repeated infections and vaccine breakthrough infections have led to complex immune landscapes in populations making it increasingly difficult to assess the intrinsic neutralizing antibody responses elicited by the vaccines. Hong Kong's intensive COVID-19 containment policy through 2020-2021 permitted us to identify sera from a small number of infection-naïve individuals who received 3 doses of the RNA BNT162b2 vaccine encoding the Wuhan-like spike (WT) and were boosted with a fourth dose of the WT vaccine or the bivalent WT and BA.4/5 spike (WT + BA.4/5). While neutralizing antibody to wild-type virus was comparable in both vaccine groups, BNT162b2 (WT + BA.4/BA.5) bivalent vaccine elicited significantly higher plaque neutralizing antibodies to Omicron subvariants BA.5, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3.2, EG.5.1, HK.3, BA.2.86 and JN.1, compared to BNT162b2 monovalent vaccine. The single amino acid substitution that differentiates the spike of JN.1 from BA.2.86 resulted in a profound antigenic change.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Broadly Neutralizing Antibodies , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Vaccination , Antibodies, Viral
11.
Vaccine ; 42(8): 1878-1882, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38395722

ABSTRACT

A test negative study was carried out from 13 June through to 15 November 2023 enrolling 3183 children hospitalized with acute respiratory illness in Hong Kong. Influenza A and B viruses were detected in 528 (16.6%) children, among which 419 (79.4%) were influenza A(H3N2). The overall vaccine effectiveness against hospitalization associated with any influenza virus infection was estimated as 22.4% (95% CI: -11.7%, 46.1%), and against influenza A(H3N2) specifically was 14.3% (95% CI: -29.2%, 43.2%). Despite the moderate to low VE estimated here, which could be a result of waning immunity and antigenic drift, influenza vaccination remains an important approach to reduce the impact of influenza in children.


Subject(s)
Influenza Vaccines , Influenza, Human , Child , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Hong Kong/epidemiology , Vaccine Efficacy , Hospitalization , Vaccination , Seasons
12.
Cell Rep ; 43(1): 113653, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38175758

ABSTRACT

Omicron, as the emerging variant with enhanced vaccine tolerance, has sharply disrupted most therapeutic antibodies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the subgenus Sarbecovirus, members of which share high sequence similarity. Herein, we report one sarbecovirus antibody, 5817, which has broad-spectrum neutralization capacity against SARS-CoV-2 variants of concern (VOCs) and SARS-CoV, as well as related bat and pangolin viruses. 5817 can hardly compete with six classes of receptor-binding-domain-targeted antibodies grouped by structural classifications. No obvious impairment in the potency is detected against SARS-CoV-2 Omicron and subvariants. The cryoelectron microscopy (cryo-EM) structure of neutralizing antibody 5817 in complex with Omicron spike reveals a highly conserved epitope, only existing at the receptor-binding domain (RBD) open state. Prophylactic and therapeutic administration of 5817 potently protects mice from SARS-CoV-2 Beta, Delta, Omicron, and SARS-CoV infection. This study reveals a highly conserved cryptic epitope targeted by a broad sarbecovirus neutralizing antibody, which would be beneficial to meet the potential threat of pre-emergent SARS-CoV-2 VOCs.


Subject(s)
Severe acute respiratory syndrome-related coronavirus , Animals , Mice , Broadly Neutralizing Antibodies , Cryoelectron Microscopy , Antibodies, Neutralizing , Epitopes , Antibodies, Viral
13.
J Clin Virol ; 170: 105621, 2024 02.
Article in English | MEDLINE | ID: mdl-38056114

ABSTRACT

BACKGROUND: Natural SARS-CoV-2 infection may elicit antibodies to a range of viral proteins including non-structural protein ORF8. RNA, adenovirus vectored and sub-unit vaccines expressing SARS-CoV-2 spike would be only expected to elicit S-antibodies and antibodies to distinct domains of nucleocapsid (N) protein may reliably differentiate infection from vaccine-elicited antibody. However, inactivated whole virus vaccines may potentially elicit antibody to wider range of viral proteins, including N protein. We hypothesized that antibody to ORF8 protein will discriminate natural infection from vaccination irrespective of vaccine type. METHODS: We optimized and validated the anti-ORF8 and anti-N C-terminal domain (NCTD) ELISA assays using sera from pre-pandemic, RT-PCR confirmed natural infection sera and BNT162b2 (BNT) or CoronaVac vaccinees. We then applied these optimized assays to a cohort of blood donor sera collected in April-July 2022 with known vaccination and self-reported infection status. RESULTS: We optimized cut-off values for the anti-ORF8 and anti-N-CTD IgG ELISA assays using receiver-operating-characteristic (ROC) curves. The sensitivity of the anti-ORF8 and anti-N-CTD ELISA for detecting past infection was 83.2% and 99.3%, respectively. Specificity of anti-ORF8 ELISA was 96.8 % vs. the pre-pandemic cohort or 93% considering the pre-pandemic and vaccine cohorts together. The anti-N-CTD ELISA specificity of 98.9% in the pre-pandemic cohort, 93% in BNT vaccinated and only 4 % in CoronaVac vaccinated cohorts. Anti-N-CTD antibody was longer-lived than anti-ORF8 antibody after natural infection. CONCLUSIONS: Anti-N-CTD antibody assays provide good discrimination between natural infection and vaccination in BNT162b2 vaccinated individuals. Anti-ORF8 antibody can help discriminate infection from vaccination in either type of vaccine and help estimate infection attack rates (IAR) in communities.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19/diagnosis , COVID-19/prevention & control , BNT162 Vaccine , SARS-CoV-2 , Vaccination , Antibodies, Viral
15.
Emerg Infect Dis ; 30(1): 168-171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147510

ABSTRACT

We detected high titers of cross-reactive neuraminidase inhibition antibodies to influenza A(H5N1) virus clade 2.3.4.4b in 96.8% (61/63) of serum samples from healthy adults in Hong Kong in 2020. In contrast, antibodies at low titers were detected in 42% (21/50) of serum samples collected in 2009. Influenza A(H1N1)pdm09 and A(H5N1) titers were correlated.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Influenza, Human , Adult , Animals , Humans , Neuraminidase , Antibodies, Viral
16.
World J Pediatr ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085470

ABSTRACT

BACKGROUND: Optimising the immunogenicity of COVID-19 vaccines to improve their protection against disease is necessary. Fractional dosing by intradermal (ID) administration has been shown to be equally immunogenic as intramuscular (IM) administration for several vaccines, but the immunogenicity of ID inactivated whole severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the full dose is unknown. This study (NCT04800133) investigated the superiority of antibody and T-cell responses of full-dose CoronaVac by ID over IM administration in adolescents. METHODS: Participants aged 11-17 years received two doses of IM or ID vaccine, followed by the 3rd dose 13-42 days later. Humoral and cellular immunogenicity outcomes were measured post-dose 2 (IM-CC versus ID-CC) and post-dose 3 (IM-CCC versus ID-CCC). Doses 2 and 3 were administered to 173 and 104 adolescents, respectively. RESULTS: Spike protein (S) immunoglobulin G (IgG), S-receptor-binding domain (RBD) IgG, S IgG Fcγ receptor IIIa (FcγRIIIa)-binding, SNM [sum of individual (S), nucleocapsid protein (N), and membrane protein (M) peptide pool]-specific interleukin-2 (IL-2)+CD4+, SNM-specific IL-2+CD8+, S-specific IL-2+CD8+, N-specific IL-2+CD4+, N-specific IL-2+CD8+ and M-specific IL-2+CD4+ responses fulfilled the superior and non-inferior criteria for ID-CC compared to IM-CC, whereas IgG avidity was inferior. For ID-CCC, S-RBD IgG, surrogate virus neutralisation test, 90% plaque reduction neutralisation titre (PRNT90), PRNT50, S IgG avidity, S IgG FcγRIIIa-binding, M-specific IL-2+CD4+, interferon-γ+CD8+ and IL-2+CD8+ responses were superior and non-inferior to IM-CCC. The estimated vaccine efficacies were 49%, 52%, 66% and 79% for IM-CC, ID-CC, IM-CCC and ID-CCC, respectively. The ID groups reported more local, mild adverse reactions. CONCLUSION: This is the first study to demonstrate superior antibody and M-specific T-cell responses by ID inactivated SARS-CoV-2 vaccination and serves as the basis for future research to improve the immunogenicity of inactivated vaccines.

17.
J Virol ; 97(12): e0136923, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38038429

ABSTRACT

IMPORTANCE: Viral host adaptation plays an important role in inter-species transmission of coronaviruses and influenza viruses. Multiple human-adaptive mutations have been identified in influenza viruses but not so far in MERS-CoV that circulates widely in dromedary camels in the Arabian Peninsula leading to zoonotic transmission. Here, we analyzed clade B MERS-CoV sequences and identified an amino acid substitution L232F in nsp6 that repeatedly occurs in human MERS-CoV. Using a loss-of-function reverse genetics approach, we found the nsp6 L232F conferred increased viral replication competence in vitro, in cultures of the upper human respiratory tract ex vivo, and in lungs of mice infected in vivo. Our results showed that nsp6 L232F may be an adaptive mutation associated with zoonotic transmission of MERS-CoV. This study highlighted the capacity of MERS-CoV to adapt to transmission to humans and also the need for continued surveillance of MERS-CoV in camels.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Nonstructural Proteins , Animals , Humans , Mice , Amino Acid Substitution , Camelus , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Viral Nonstructural Proteins/genetics
18.
Nat Commun ; 14(1): 8377, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104114

ABSTRACT

Reports of symptomatic rebound and/or test re-positivity among COVID-19 patients following the standard five-day treatment course of nirmatrelvir/ritonavir have sparked debates regarding optimal treatment timing and dosage. It is unclear whether initiating nirmatrelvir/ritonavir immediately after symptom onset would improve clinical outcomes and/or lead to post-treatment viral burden rebound due to inadequate viral clearance during treatment. Here we show that, by emulating a randomized target trial using real-world electronic medical record data from all 87,070 adult users of nirmatrelvir/ritonavir in Hong Kong between 16th March 2022 and 15th January 2023, early initiation of nirmatrelvir/ritonavir treatment (0 to 1 days after symptom onset or diagnosis) significantly reduced the incidence of 28-day all-cause mortality and hospitalization compared to delayed initiation (2 or more days) (absolute risk reduction [ARR]: 1.50% (95% confidence interval 1.17-1.80%); relative risk [RR]: 0.77 (0.73, 0.82)), but may be associated with a significant elevated risk of viral burden rebound (ARR: -1.08% (-1.55%, -0.46%)), although the latter estimates were associated with high uncertainty due to limited sample sizes. As such, patients should continue to initiate nirmatrelvir/ritonavir early after symptom onset or diagnosis to better protect against the more serious outcomes of hospitalization and mortality.


Subject(s)
COVID-19 , Adult , Humans , COVID-19 Drug Treatment , Ritonavir/therapeutic use , Cognition , Antiviral Agents/therapeutic use
19.
J Infect Dis ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950884

ABSTRACT

BACKGROUND: Annual influenza vaccination is recommended for older adults but repeated vaccination with standard-dose influenza vaccine has been linked to reduced immunogenicity and effectiveness, especially against A(H3N2) viruses. METHODS: Community-dwelling Hong Kong adults aged 65-82 years were randomly allocated to receive 2017/18 standard-dose quadrivalent, MF59-adjuvanted trivalent, high-dose trivalent, and recombinant-HA quadrivalent vaccination. Antibody response to unchanged A(H3N2) vaccine antigen was compared among participants with and without self-reported prior year (2016/17) standard-dose vaccination. RESULTS: Mean fold rise (MFR) in antibody titers from Day 0 to Day 30 by hemagglutination inhibition and virus microneutralization assays were lower among 2017/18 standard-dose and enhanced vaccine recipients with (range, 1.7-3.0) vs. without (range, 4.3-14.3) prior 2016/17 vaccination. MFR was significantly reduced by about one half to four fifths for previously vaccinated recipients of standard-dose and all three enhanced vaccines (ß range, 0.21-0.48). Among prior-year vaccinated older adults, enhanced vaccines induced higher 1.43 to 2.39-fold geometric mean titers and 1.28 to 1.74-fold MFR vs. standard-dose vaccine by microneutralization assay. CONCLUSIONS: In the context of unchanged A(H3N2) vaccine strain, prior-year vaccination was associated with reduced antibody response among both standard-dose and enhanced influenza vaccine recipients. Enhanced vaccines improved antibody response among older adults with prior-year standard-dose vaccination.

20.
Kidney Int Rep ; 8(11): 2356-2367, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38025215

ABSTRACT

Introduction: Patients with severe kidney diseases are at risk of complications from COVID-19; however, little is known about the effectiveness of COVID-19 vaccines in children and adolescents with kidney diseases. Methods: We investigated the immunogenicity and safety of an accelerated 3-dose primary series of COVID-19 vaccination among 59 pediatric patients with chronic kidney disease (CKD) (mean age 12.9 years; 30 male) with or without immunosuppression, dialysis, or kidney transplant. Dosage was 0.1 ml BNT162b2 to those aged 5 to 11 years, and 0.3 ml BNT162b2 to those aged 11 to 18 years. Results: Three doses of either vaccine type elicited significant antibody responses that included spike receptor-binding domain (S-RBD) IgG (90.5%-93.8% seropositive) and surrogate virus neutralization (geometric mean sVNT% level, 78.6%-79.3%). There were notable T cell responses. Weaker neutralization responses were observed among those on immunosuppression, especially those receiving higher number of immunosuppressants or on mycophenolate mofetil. Neutralization was reduced against Omicron BA.1 compared to wild type (WT, i.e., ancestral) (post-dose 3 sVNT% level; 82.7% vs. 27.4%; P < 0.0001). However, the T cell response against Omicron BA.1 was preserved, which likely confers protection against severe COVID-19. Infected patients exhibited hybrid immunity after vaccination, as evidenced by the higher Omicron BA.1 neutralization response among these infected patients who received 2 doses compared with those who were uninfected. Generally mild or moderate adverse reactions following vaccines were reported. Conclusion: An accelerated 3-dose primary series with BNT162b2 is immunogenic and safe in young children and adolescents with kidney diseases.

SELECTION OF CITATIONS
SEARCH DETAIL