Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(6): 1395-1401, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36749682

ABSTRACT

Intramolecular hydrogen transfer, a reaction where donor and acceptor sites of a hydrogen atom are part of the same molecule, is a ubiquitous reaction in biochemistry and organic synthesis. In this work, we report hydronium ion (H3O+) production from aminobenzoic acid (ABA) after core-level ionization with soft X-ray synchrotron radiation. The formation of H3O+ during the fragmentation requires that at least two hydrogen atoms migrate to one of the oxygen atoms within the molecule. The comparison of two structural isomers, ortho- and meta-ABA, revealed that the production of H3O+ depends strongly on the structure of the molecule, the ortho-isomer being much more prone to produce H3O+. The isomer-dependency suggests that the amine group acts as a donor in the hydrogen transfer process. In the case of ortho-ABA, detailed H3O+ production pathways were investigated using photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy. It was found that H3O+ can result from a direct two-body dissociation but also from sequential fragmentation processes.

2.
Phys Chem Chem Phys ; 24(19): 11646-11653, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35506916

ABSTRACT

Core ionization dynamics of argon-water heteroclusters ArM[H2O]N are investigated using a site and process selective experimental scheme combining 3 keV electron irradiation with Auger electron-ion-ion multi-coincidence detection. The formation of Ar 2p-1 vacancies followed by non-radiative decay to intermediate one-site doubly ionized states Ar2+(3p-2)-ArM-1[H2O]N and subsequent redistribution of charge to the cluster environment are monitored. At low argon concentrations the emission of an [H2O]n'H+/[H2O]n''H+ ion pair is the dominant outcome, implying on high efficiency of charge transfer to the water network. Increasing the condensation fraction of argon in the mixed clusters and/or to pure argon clusters is reflected as a growing yield of Arm'+/Arm''+ ion pairs, providing a fingerprint of the precursor heterocluster beam composition. The coincident Auger electron spectra, resolved with better than 1 eV resolution, show only subtle differences and thereby reflect the local nature of the initial Auger decay step. The results lead to better understanding of inner shell ionization processes in heterogeneous clusters and in aqueous environments in general.

3.
Phys Chem Chem Phys ; 24(5): 2934-2943, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35060587

ABSTRACT

The formation of multicomponent aerosol particles from precursor solution droplets often involves segregation and surface enrichment of the different solutes, resulting in non-homogeneous particle structures and diverse morphologies. In particular, these effects can have a significant influence on the chemical composition of the particle-vapor interface. In this work, we investigate the bulk/surface partitioning of inorganic ions, Na+, Mg2 +, Ca2 +, Cl- and Br-, in atomiser-generated submicron aerosols using synchrotron radiation based X-ray photoelectron spectroscopy (XPS). Specifically, the chemical compositions of the outermost few nm thick surface layers of non-supported MgCl2/CaCl2 and NaBr/MgBr2 particles are determined. It is found that in MgCl2/CaCl2 particles, the relative abundance of the two species in the particle surface correlates well with their mixing ratio in the parent aqueous solution. In stark contrast, extreme surface enrichment of Mg2 + is observed in NaBr/MgBr2 particles formed from both aqueous and organic solution droplets, indicative of core-shell structures. Structural properties and hydration state of the particles are discussed.

4.
J Phys Chem A ; 125(22): 4750-4759, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34034483

ABSTRACT

The solvation of alkali and halide ions in the aqueous environment has been a subject of intense experimental and theoretical research with multidisciplinary interests; yet, a comprehensive molecular-level understanding has still not been obtained. In recent years, electron spectroscopy has been increasingly applied to study the electronic and structural properties of aqueous ions with implications, especially in atmospheric chemistry. In this work, we report core and valence level (Cl 2p, Cl 3p, and K 3p) photoelectron spectra of the common alkali halide, KCl, doped in gas-phase water clusters in the size range of a few hundred water molecules. The results indicate that the electronic structure of these nanosolutions shows a distinct character from that observed at the liquid-vapor interface in liquid microjets and ambient pressure setups. Insights are provided into the unique solvation properties of ions in a nanoaqueous environment, emerging properties of bulk electrolyte solutions with growing cluster size, and sensitivity of the electronic structure to varying solvation configurations.

5.
RSC Adv ; 11(4): 2103-2111, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-35424180

ABSTRACT

Ca- and Cl-containing nanoparticles are common in atmosphere, originating for example from desert dust and sea water. The properties and effects on atmospheric processes of these aerosol particles depend on the relative humidity (RH) as they are often both hygroscopic and deliquescent. We present here a study of surface structure of free-flying CaCl2 nanoparticles (CaCl2-NPs) in the 100 nm size regime prepared at different humidity levels (RH: 11-85%). We also created mixed nanoparticles by aerosolizing a solution of CaCl2 and phenylalanine (Phe), which is a hydrophobic amino acid present in atmosphere. Information of hydration state of CaCl2-NPs and production of mixed CaCl2 + Phe nanoparticles was obtained using soft X-ray absorption spectroscopy (XAS) at Ca 2p, Cl 2p, C 1s, and O 1s edges. We also report Ca 2p and Cl 2p X-ray absorption spectra of an aqueous CaCl2 solution. The O 1s X-ray absorption spectra measured from hydrated CaCl2-NPs resemble liquid-like water spectrum, which is heavily influenced by the presence of ions. Core level spectra of Ca2+ and Cl- ions do not show a clear dependence of % RH, indicating that the first coordination shell remains similar in all measured hydrated CaCl2-NPs, but they differ from aqueous solution and solid CaCl2.

6.
Phys Chem Chem Phys ; 22(5): 2648-2659, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31436275

ABSTRACT

Momenta of ions from diiodomethane molecules after multiple ionization by soft-X-ray free-electron-laser pulses are measured. Correlations between the ion momenta are extracted by covariance methods formulated for the use in multiparticle momentum-resolved ion time-of-flight spectroscopy. Femtosecond dynamics of the dissociating multiply charged diiodomethane cations is discussed and interpreted by using simulations based on a classical Coulomb explosion model including charge evolution.

SELECTION OF CITATIONS
SEARCH DETAIL