Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(5): 2983-2991, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36700823

ABSTRACT

One of the major challenges for in vivo electrochemical measurements of dopamine (DA) is to achieve selectivity in the presence of interferents, such as ascorbic acid (AA) and uric acid (UA). Complicated multimaterial structures and ill-defined pretreatments have been frequently utilized to enhance selectivity. The lack of control over the realized structures has prevented establishing associations between the achieved selectivity and the electrode structure. Owing to their easily tailorable structure, carbon nanofiber (CNF) electrodes have become promising materials for neurobiological applications. Here, a novel yet simple strategy to control the sensitivity and selectivity of CNF electrodes toward DA is reported. It consists of adjusting the lengths of CNF by modulating the growth phase during the fabrication process while keeping the surface chemistries similar. It was observed that the sensitivity of the CNF electrodes toward DA was enhanced with the increase in the fiber lengths. More importantly, the increase in the fiber length induced (i) an anodic shift in the DA oxidation peak and (ii) a cathodic shift in the AA oxidation peak. As the UA oxidation peak remained unaffected at high anodic potentials, the electrodes with long CNFs showed excellent selectivity. Electrodes without proper fibers showed only a single broad peak in the solution of AA, DA, and UA, completely lacking the ability to discriminate DA. Hence, the simple strategy of controlling CNF length without the need to carry out any complex chemical treatments provides us a feasible and robust route to fabricate electrode materials for neurotransmitter detection with excellent sensitivity and selectivity.


Subject(s)
Dopamine , Nanofibers , Dopamine/chemistry , Carbon/chemistry , Electrochemical Techniques , Electrodes , Ascorbic Acid/chemistry , Uric Acid/chemistry , Oxidation-Reduction
2.
Acta Biomater ; 146: 235-247, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35487425

ABSTRACT

Vertically aligned carbon nanofibers (VACNFs) are promising material candidates for neural biosensors due to their ability to detect neurotransmitters in physiological concentrations. However, the expected high rigidity of CNFs could induce mechanical mismatch with the brain tissue, eliciting formation of a glial scar around the electrode and thus loss of functionality. We have evaluated mechanical biocompatibility of VACNFs by growing nickel-catalyzed carbon nanofibers of different lengths and inter-fiber distances. Long nanofibers with large inter-fiber distance prevented maturation of focal adhesions, thus constraining cells from obtaining a highly spread morphology that is observed when astrocytes are being contacted with stiff materials commonly used in neural implants. A silicon nanopillar array with 500 nm inter-pillar distance was used to reveal that this inhibition of focal adhesion maturation occurs due to the surface nanoscale geometry, more precisely the inter-fiber distance. Live cell atomic force microscopy was used to confirm astrocytes being significantly softer on the long Ni-CNFs compared to other surfaces, including a soft gelatin hydrogel. We also observed hippocampal neurons to mature and form synaptic contacts when being cultured on both long and short carbon nanofibers, without having to use any adhesive proteins or a glial monoculture, indicating high cytocompatibility of the material also with neuronal population. In contrast, neurons cultured on a planar tetrahedral amorphous carbon sample showed immature neurites and indications of early-stage apoptosis. Our results demonstrate that mechanical biocompatibility of biomaterials is greatly affected by their nanoscale surface geometry, which provides means for controlling how the materials and their mechanical properties are perceived by the cells. STATEMENT OF SIGNIFICANCE: Our research article shows, how nanoscale surface geometry determines mechanical biocompatibility of apparently stiff materials. Specifically, astrocytes were prevented from obtaining highly spread morphology when their adhesion site maturation was inhibited, showing similar morphology on nominally stiff vertically aligned carbon fiber (VACNF) substrates as when being cultured on ultrasoft surfaces. Furthermore, hippocampal neurons matured well and formed synapses on these carbon nanofibers, indicating high biocompatibility of the materials. Interestingly, the same VACNF materials that were used in this study have earlier also been proven to be capable for electrophysiological recordings and sensing neurotransmitters at physiological concentrations with ultra-high sensitivity and selectivity, thus providing a platform for future neural probes or smart culturing surfaces with superior sensing performance and biocompatibility.


Subject(s)
Nanofibers , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Carbon/chemistry , Electrodes , Nanofibers/chemistry , Neurites
3.
ACS Omega ; 6(40): 26391-26403, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34660997

ABSTRACT

Electrode fouling is a major factor that compromises the performance of biosensors in in vivo usage. It can be roughly classified into (i) electrochemical fouling, caused by the analyte and its reaction products, and (ii) biofouling, caused by proteins and other species in the measurement environment. Here, we examined the effect of electrochemical fouling [in phosphate buffer saline (PBS)], biofouling [in cell-culture media (F12-K) with and without proteins], and their combination on the redox reactions occurring on carbon-based electrodes possessing distinct morphologies and surface chemistry. The effect of biofouling on the electrochemistry of an outer sphere redox probe, [Ru(NH3)6]3+, was negligible. On the other hand, fouling had a marked effect on the electrochemistry of an inner sphere redox probe, dopamine (DA). We observed that the surface geometry played a major role in the extent of fouling. The effect of biofouling on DA electrochemistry was the worst on planar pyrolytic carbon, whereas the multiwalled carbon nanotube/tetrahedral amorphous carbon (MWCNT/ta-C), possessing spaghetti-like morphology, and carbon nanofiber (CNF/ta-C) electrodes were much less seriously affected. The blockage of the adsorption sites for DA by proteins and other components of biological media and electrochemical fouling components (byproducts of DA oxidation) caused rapid surface poisoning. PBS washing for 10 consecutive cycles at 50 mV/s did not improve the electrode performance, except for CNF/ta-C, which performed better after PBS washing. Overall, this study emphasizes the combined effect of biological and electrochemical fouling to be critical for the evaluation of the functionality of a sensor. Thus, electrodes possessing composite nanostructures showed less surface fouling in comparison to those possessing planar geometry.

4.
Phys Chem Chem Phys ; 22(29): 16630-16640, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32666973

ABSTRACT

Biofouling imposes a significant threat for sensing probes used in vivo. Antifouling strategies commonly utilize a protective layer on top of the electrode but this may compromise performance of the electrode. Here, we investigated the effect of surface topography and chemistry on fouling without additional protective layers. We have utilized two different carbon materials; tetrahedral amorphous carbon (ta-C) and SU-8 based pyrolytic carbon (PyC) in their typical smooth thin film structure as well as with a nanopillar topography templated from black silicon. The near edge X-ray absorption fine structure (NEXAFS) spectrum revealed striking differences in chemical functionalities of the surfaces. PyC contained equal amounts of ketone, hydroxyl and ether/epoxide groups, while ta-C contained significant amounts of carbonyl groups. Overall, oxygen functionalities were significantly increased on nanograss surfaces compared to the flat counterparts. Neither bovine serum albumin (BSA) or fetal bovine serum (FBS) fouling caused major effects on electron transfer kinetics of outer sphere redox (OSR) probe Ru(NH3)63+ on any of the materials. In contrast, negatively charged OSR probe IrCl62- kinetics were clearly affected by fouling, possibly due to the electrostatic repulsion between redox species and the anionically-charged proteins adsorbed on the electrode and/or stronger interaction of the proteins and positively charged surface. The OSR probe kinetics were less affected by fouling on PyC, probably due to conformational changes of proteins on the surface. Dopamine (DA) was tested as an inner sphere redox (ISR) probe and as expected, the kinetics were heavily dependent on the material; PyC had very fast electron transfer kinetics, while ta-C had sluggish kinetics. DA electron transfer kinetics were heavily affected on all surfaces by fouling (ΔEp increase 30-451%). The effect was stronger on PyC, possibly due to the more strongly adhered protein layer limiting the access of the probe to the inner sphere.


Subject(s)
Biofouling , Biosensing Techniques , Carbon/chemistry , Electrochemistry , Kinetics , Oxidation-Reduction , Proteins/chemistry , Silicon/chemistry , Surface Properties
5.
Mol Neurobiol ; 57(1): 179-190, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31520316

ABSTRACT

Age structure in most developed countries is changing fast as the average lifespan is increasing significantly, calling for solutions to provide improved treatments for age-related neurological diseases and disorders. In order to address these problems, a reliable way of recording information about neurotransmitters from in vitro and in vivo applications is needed to better understand neurological diseases and disorders as well as currently used treatments. Likewise, recent developments in medicine, especially with the opioid crisis, are demanding a swift move to personalized medicine to administer patient needs rather than population-wide averages. In order to enable the so-called personalized medicine, it is necessary to be able to do measurements in vivo and in real time. These actions require sensitive and selective detection of different analytes from very demanding environments. Current state-of-the-art materials are unable to provide sensitive and selective detection of neurotransmitters as well as the required time resolution needed for drug molecules at a reasonable cost. To meet these challenges, we have utilized different metals to grow carbon nanomaterials and applied them for sensing applications showing that there are clear differences in their electrochemical properties based on the selected catalyst metal. Additionally, we have combined atomistic simulations to support optimizing materials for experiments and to gain further understanding of the atomistic level reactions between different analytes and the sensor surface. With carbon nanostructures grown from Ni and Al + Co + Fe hybrid, we can detect dopamine, ascorbic acid, and uric acid simultaneously. On the other hand, nanostructures grown from platinum provide a feasible platform for detection of H2O2 making them suitable candidates for enzymatic biosensors for detection of glutamate, for example. Tetrahedral amorphous carbon electrodes have an ability to detect morphine, paracetamol, tramadol, and O-desmethyltramadol. With carbon nanomaterial-based sensors, it is possible to reach metal-like properties in sensing applications using only a fraction of the metal as seed for the material growth. We have also seen that by using nanodiamonds as growth catalyst for carbon nanofibers, it is not possible to detect dopamine and ascorbic acid simultaneously, although the morphology of the resulting nanofibers is similar to the ones grown using Ni. This further indicates the importance of the metal selection for specific applications. However, Ni as a continuous layer or as separate islands does not provide adequate performance. Thus, it appears that metal nanoparticles combined with fiber-like morphology are needed for optimized sensor performance for neurotransmitter detection. This opens up a new research approach of application-specific nanomaterials, where carefully selected metals are integrated with carbon nanomaterials to match the needs of the sensing application in question.


Subject(s)
Carbon/metabolism , Hydrogen Peroxide/metabolism , Metal Nanoparticles , Nanotubes, Carbon/chemistry , Biosensing Techniques/methods , Dopamine/metabolism , Electrochemical Techniques , Humans , Metals/metabolism , Nanostructures/chemistry , Neurotransmitter Agents/metabolism
6.
Micromachines (Basel) ; 10(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370267

ABSTRACT

Pattern formation of pyrolyzed carbon (PyC) and tetrahedral amorphous carbon (ta-C) thin films were investigated at micro- and nanoscale. Micro- and nanopillars were fabricated from both materials, and their biocompatibility was studied with cell viability tests. Carbon materials are known to be very challenging to pattern. Here we demonstrate two approaches to create biocompatible carbon features. The microtopographies were 2 µ m or 20 µ m pillars (1:1 aspect ratio) with three different pillar layouts (square-grid, hexa-grid, or random-grid orientation). The nanoscale topography consisted of random nanopillars fabricated by maskless anisotropic etching. The PyC structures were fabricated with photolithography and embossing techniques in SU-8 photopolymer which was pyrolyzed in an inert atmosphere. The ta-C is a thin film coating, and the structures for it were fabricated on silicon substrates. Despite different fabrication methods, both materials were formed into comparable micro- and nanostructures. Mouse neural stem cells were cultured on the samples (without any coatings) and their viability was evaluated with colorimetric viability assay. All samples expressed good biocompatibility, but the topography has only a minor effect on viability. Two µ m pillars in ta-C shows increased cell count and aggregation compared to planar ta-C reference sample. The presented materials and fabrication techniques are well suited for applications that require carbon chemistry and benefit from large surface area and topography, such as electrophysiological and -chemical sensors for in vivo and in vitro measurements.

7.
Ann Diagn Pathol ; 40: 136-142, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31077875

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease with a dismal prognosis and an unknown etiology. Inorganic dust is a known risk factor, and air pollution seems to affect disease progression. We aimed to investigate inorganic particulate matter in IPF lung tissue samples. Using polarizing light microscopy, we examined coal dust pigment and inorganic particulate matter in 73 lung tissue samples from the FinnishIPF registry. We scored the amount of coal dust pigment and particulate matter from 0 to 5. Using energy dispersive spectrometry with a scanning electron microscope, we conducted an elemental analysis of six IPF lung tissue samples. We compared the results to the registry data, and to the population density and air quality data. To compare categorical data, we used Fisher's exact test; we estimated the survival of the patients with Kaplan-Meier curves. We found inorganic particulate matter in all samples in varying amounts. Samples from the southern regions of Finland, where population density and fine particle levels are high, more often had particulate matter scores from 3 to 5 than samples from the northern regions (31/50, 62.0% vs. 7/23, 30.4%, p = 0.02). The highest particulate matter scores of 4 and 5 (n = 15) associated with a known exposure to inorganic dust (p = 0.004). An association between particulate matter in the lung tissue of IPF patients and exposure to air pollution may exist.


Subject(s)
Air Pollution/adverse effects , Idiopathic Pulmonary Fibrosis/pathology , Particulate Matter , Aged , Dust , Female , Humans , Lung/pathology , Male , Microscopy, Electron, Scanning , Microscopy, Polarization , Middle Aged , Population Density , Risk Factors
9.
Biosens Bioelectron ; 118: 23-30, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30055416

ABSTRACT

Unmodified and multi-walled carbon nanotube (MWCNT) modified tetrahedral amorphous carbon (ta-C) films of 15 and 50 nm were investigated as potential in vivo sensor materials for the detection of dopamine (DA) in the presence of the main interferents, ascorbic acid (AA) and uric acid (UA). The MWCNTs were grown directly on ta-C by chemical vapor deposition (designated as ta-C+CNT) and were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Electroanalytical sensitivity and selectivity were determined with cyclic voltammetry. Biocompatibility of the materials was assessed with cell cultures of mouse neural stem cells (mNSCs). The detection limits of DA for both ta-C and ta-C+CNT electrodes ranged from 40 to 85 nM, which are well within the required range for in vivo detection. The detection limits were lower for both ta-C and ta-C+CNT electrodes with 50 nm of ta-C compared to 15 nm. The ta-C electrodes showed a large dynamic linear range of 0.01-100 µM but could not resolve between the oxidation peaks of DA, AA and UA. Modification with MWCNTs, however, resulted in excellent selectivity and all three analytes could be detected simultaneously at physiologically relevant concentrations using cyclic voltammetry. Based on cell culture of mNSCs, both ta-C and ta-C+CNT exhibited good biocompatibility, demonstrating their potential as in vivo sensor materials for the detection of DA.


Subject(s)
Biosensing Techniques/methods , Carbon/chemistry , Dopamine/analysis , Nanotubes, Carbon/chemistry , Animals , Ascorbic Acid , Electrodes , Mice , Uric Acid
10.
RSC Adv ; 8(23): 12742-12751, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-35541272

ABSTRACT

Removal of left-over catalyst particles from carbon nanomaterials is a significant scientific and technological problem. Here, we present the physical and electrochemical study of application-specific carbon nanofibers grown from Pt-catalyst layers. The use of Pt catalyst removes the requirement for any cleaning procedure as the remaining catalyst particles have a specific role in the end-application. Despite the relatively small amount of Pt in the samples (7.0 ± 0.2%), they show electrochemical features closely resembling those of polycrystalline Pt. In O2-containing environment, the material shows two separate linear ranges for hydrogen peroxide reduction: 1-100 µM and 100-1000 µM with sensitivities of 0.432 µA µM-1 cm-2 and 0.257 µA µM-1 cm-2, respectively, with a 0.21 µM limit of detection. In deaerated solution, there is only one linear range with sensitivity 0.244 µA µM-1 cm-2 and 0.22 µM limit of detection. We suggest that the high sensitivity between 1 µM and 100 µM in solutions where O2 is present is due to oxygen reduction reaction occurring on the CNFs producing a small additional cathodic contribution to the measured current. This has important implications when Pt-containing sensors are utilized to detect hydrogen peroxide reduction in biological, O2-containing environment.

11.
Anal Chem ; 90(2): 1408-1416, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29218983

ABSTRACT

A significant problem with implantable sensors is electrode fouling, which has been proposed as the main reason for biosensor failures in vivo. Electrochemical fouling is typical for dopamine (DA) as its oxidation products are very reactive and the resulting polydopamine has a robust adhesion capability to virtually all types of surfaces. The degree of DA fouling of different carbon electrodes with different terminations was determined using cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM) approach curves and imaging. The rate of electron transfer kinetics at the fouled electrode surface was determined from SECM approach curves, allowing a comparison of insulating film thickness for the different terminations. SECM imaging allowed the determination of different morphologies, such as continuous layers or islands, of insulating material. We show that heterogeneous modification of carbon electrodes with carboxyl-amine functionalities offers protection against formation of an insulating polydopamine layer, while retaining the ability to detect DA. The benefits of the heterogeneous termination are proposed to be due to the electrostatic repulsion between amino-functionalities and DA. Furthermore, we show that the conductivity of the surfaces as well as the response toward DA was recovered close to the original performance level after cleaning the surfaces for 10-20 cycles in H2SO4 on all materials but pyrolytic carbon (PyC). The recovery capacity of the PyC electrode was lower, possibly due to stronger adsorption of DA on the surface.


Subject(s)
Biosensing Techniques/instrumentation , Carbon/chemistry , Dopamine/analysis , Electrochemical Techniques/instrumentation , Adsorption , Amination , Electrodes, Implanted , Indoles/analysis , Oxidation-Reduction , Polymers/analysis , Surface Properties
12.
RSC Adv ; 8(62): 35802-35812, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-35547905

ABSTRACT

Application-specific carbon nanofibers grown from Pt-catalyst layers have been shown to be a promising material for biosensor development. Here we demonstrate immobilization of glutamate oxidase on them and their use for amperometric detection of glutamate at two different potentials. At -0.15 V vs. Ag/AgCl at concentrations higher than 100 µM the oxygen reduction reaction severely interferes with the enzymatic production of H2O2 and consequently affects the detection of glutamate. On the other hand, at 0.6 V vs. Ag/AgCl enzyme saturation starts to affect the measurement above a glutamate concentration of 100 µM. Moreover, we suggest here that glutamate itself might foul Pt surfaces to some degree, which should be taken into account when designing Pt-based sensors operating at high anodic potentials. Finally, the Pt-grown and Ni-grown carbon nanofibers were shown to be biocompatible. However, the cells on Pt-grown carbon nanofibers had different morphology and formation of filopodia compared to those on Ni-grown carbon nanofibers. The effect was expected to be caused rather by the different fiber dimensions between the samples than the catalyst metal itself. Further experiments are required to find the optimal dimensions of CNFs for biological purposes.

13.
Biosens Bioelectron ; 88: 273-282, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27567263

ABSTRACT

We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups NDandante or amine NDamine, carboxyl NDvox or hydroxyl groups NDH and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. NDandante and NDH showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on NDandante and NDH and reduced on NDamine and NDvox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions.


Subject(s)
Biosensing Techniques/methods , Carbon/chemistry , Dopamine/analysis , Electrochemical Techniques/methods , Nanodiamonds/chemistry , Animals , Cell Line , Cell Survival , Electrodes , Humans , Limit of Detection , Mice , Nanodiamonds/ultrastructure , Nanostructures/chemistry , Nanostructures/ultrastructure , Rats , Silicon/chemistry , Surface Properties , Titanium/chemistry
14.
J Mater Chem B ; 5(45): 9033-9044, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-32264131

ABSTRACT

Here we investigated the electrochemical properties and dopamine (DA) detection capability of SU-8 photoresist based pyrolytic carbon (PyC) as well as its biocompatibility with neural cells. This approach is compatible with microfabrication techniques which is crucial for device development. X-ray photoelectron spectroscopy shows that PyC consists 98.5% of carbon, while oxygen plasma treatment (PyC-O2) increases the amount of oxygen up to 27.1%. PyC showed nearly reversible (ΔEp 63 mV) electron transfer kinetics towards outer sphere redox probe (Ru(NH3)6 2+/3+), while the reaction on PyC-O2 was quasi-reversible (ΔEp > 75 mV). DA showed both diffusion and adsorption-defined reaction kinetics with fast electron transfer with the ΔEp values of 50 mV and 30 mV, for PyC and PyC-O2, respectively. The strong interaction between the hydroxyl groups on the surface and DA, as confirmed by simulations, facilitates the redox reactions of DA. DA showed a linear response in the measured physiologically relevant range (50 nM-1 µM) and sensitivities were 1.2 A M-1 cm-2 for PyC and 2.7 A M-1 cm-2 for PyC-O2. Plasma oxidation (PyC-O2) improved cell adhesion even more than poly-l-lysine (PLL) coating on PyC, but best adhesion was achieved on PLL coated PyC-O2. Glial cells, neuroblastoma cells and neural stem cells all showed similar behavior.

15.
J Biomater Appl ; 30(6): 873-85, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26341661

ABSTRACT

The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-ß3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.


Subject(s)
Cartilage, Articular/growth & development , Chondrocytes/cytology , Chondrogenesis/physiology , Mesenchymal Stem Cells/cytology , Tissue Engineering/instrumentation , Tissue Scaffolds , Cartilage, Articular/cytology , Cell Aggregation/physiology , Cell Differentiation/physiology , Cell Line , Chondrocytes/physiology , Equipment Design , Equipment Failure Analysis , Guided Tissue Regeneration/instrumentation , Humans , Materials Testing , Mesenchymal Stem Cells/physiology , Nanofibers/chemistry , Polyesters/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL