Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.026
Filter
1.
J Am Chem Soc ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109994

ABSTRACT

The poor durability of Ru-based catalysts limits the practical application in proton exchange membrane water electrolysis (PEMWE). Here, we report that the asymmetric active units in Ru1-xMxO2 (M = Sb, In, and Sn) binary solid solution oxides are constructed by introducing acid-resistant p-block metal sites, breaking the activity and stability limitations of RuO2 in acidic oxygen evolution reaction (OER). Constructing highly asymmetric Ru-O-Sb units with a strong electron delocalization effect significantly shortens the spatial distance between Ru and Sb sites, improving the bonding strength of the overall structure. The unique two-electron redox couples at Sb sites in asymmetric active units trigger additional chemical steps at different OER stages, facilitating continuous proton transfer. The optimized Ru0.8Sb0.2O2 solid solution requires a superlow overpotential of 160 mV at 10 mA cm-2 and a record-breaking stability of 1100 h in an acidic electrolyte. Notably, the scale-prepared Ru0.8Sb0.2O2 achieves efficient PEMWE performance under industrial conditions. General mechanism analysis shows that the enhanced proton transport in the asymmetric Ru-O-M unit provides a new working pathway for acidic OER, breaking the scaling relationship without sacrificing stability.

2.
World J Hepatol ; 16(7): 1018-1028, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39086533

ABSTRACT

BACKGROUND: Liver condition is a crucial prognostic factor for patients with hepatocellular carcinoma (HCC), but a convenient and comprehensive method to assess liver condition is lacking. Liver stiffness (LS) measured by two-dimensional shear wave elastography may help in assessing liver fibrosis and liver condition. Chronic hepatitis B (CHB) is an important risk factor for HCC progression, but LS was found to be less reliable in assessing liver fibrosis following hepatitis viral eradication. We hypothesize that the status of hepatitis virus infection would affect the accuracy of LS in assessing the liver condition. AIM: To test the feasibility and impact factors of using LS to assess liver condition in patients with HCC and CHB. METHODS: A total of 284 patients were retrospectively recruited and classified into two groups on the basis of serum CHB virus hepatitis B virus (HBV)-DNA levels [HBV-DNA ≥ 100.00 IU/mL as Pos group (n = 200) and < 100.00 IU/mL as Neg group (n = 84)]. Correlation analyses and receiver operating characteristic analyses were conducted to evaluate the relationship between LS and liver condition. RESULTS: A significant correlation was found between LS and most of the parameters considered to have the ability to evaluate liver condition (P < 0.05). When alanine aminotransferase (ALT) concentrations were normal (≤ 40 U/L), LS was correlated with liver condition indices (P < 0.05), but the optimal cutoff of LS to identify a Child-Pugh score of 5 was higher in the Neg group (9.30 kPa) than the Pos group (7.40 kPa). When ALT levels were elevated (> 40 U/L), the correlations between LS and liver condition indices were not significant (P > 0.05). CONCLUSION: LS was significantly correlated with most liver condition indices in patients with CHB and HCC. However, these correlations varied according to differences in HBV-DNA and transaminase concentrations.

4.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125029

ABSTRACT

Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode-electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology's industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement.

5.
Front Nutr ; 11: 1390618, 2024.
Article in English | MEDLINE | ID: mdl-39104757

ABSTRACT

Background: Observational studies have explored the impact of iron homeostasis on infertility; however, establishing definitive causal relationships remains challenging. This study utilized a two-sample Mendelian randomization approach to investigate the potential causal relationship between iron status and infertility. Materials and methods: Four indicators of iron status-serum iron, ferritin, transferrin saturation, and total iron binding capacity, were considered as exposure factors. Infertility was the outcome variable for both men and women. Robust causality was assessed using the primary inverse-variance-weighted method, complemented by three supplementary Mendelian randomization approaches. Sensitivity analyses were performed to enhance the precision and reliability of the results. Results: No statistically significant associations were identified between the four indicators of iron status and infertility. These results remained consistent across multiple Mendelian randomization methodologies. Conclusion: In conclusion, there is no evidence of a genetic causal relationship between iron status and infertility. Nevertheless, this does not preclude the possibility of a connection between iron status and infertility at different mechanistic levels.

6.
J Anim Sci Biotechnol ; 15(1): 93, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970136

ABSTRACT

BACKGROUND: Boars fed a mixed form of inorganic and organic iron in excess of the NRC recommended levels still develop anemia, which suggested that the current level and form of iron supplementation in boar diets may be inappropriate. Therefore, 56 healthy Topeka E line boars aged 15-21 months were randomly divided into 5 groups: basal diet supplemented with 96 mg/kg ferrous sulfate (FeSO4) and 54 mg/kg glycine chelated iron (Gly-Fe, control); 80 mg/kg or 115 mg/kg Gly-Fe; 80 mg/kg or 115 mg/kg methionine hydroxyl analogue chelated iron (MHA-Fe, from Calimet-Fe) for 16 weeks. The effects of dietary iron supplementation with different sources and levels on semen quality in boars were investigated. RESULTS: 1) Serum Fe and hemoglobin concentrations were not affected by reduced dietary iron levels in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups compared with the control group (P > 0.05). 2) Serum interleukin-6 (IL-6) and sperm malondialdehyde (MDA) levels in the 80 mg/kg or 115 mg/kg MHA-Fe groups were lower than those in the control group (P < 0.05), and higher serum superoxide dismutase levels and lower MDA levels in the 115 mg/kg MHA-Fe group (P < 0.05). 3) Boars in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups had lower serum hepcidin (P < 0.01), ferritin (P < 0.05), and transferrin receptor (P < 0.01) concentrations, and boars in the 115 mg/kg MHA-Fe group had higher seminal plasma Fe concentrations compared with the control group. 4) Boars in the 80 mg/kg and 115 mg/kg MHA-Fe groups had lower abnormal sperm rate and in situ oscillating sperm ratio compared to the control group at weeks 12 and/or 16 of the trial. However, the effect of Gly-Fe on improving semen quality in boars was not evident. 5) Serum IL-6 level was positively correlated with hepcidin concentration (P < 0.05), which in turn was significantly positively correlated with abnormal sperm rate (P < 0.05). Furthermore, significant correlations were also found between indicators of iron status and oxidative stress and semen quality parameters. CONCLUSIONS: Dietary supplementation with 80 mg/kg or 115 mg/kg MHA-Fe did not induce iron deficiency, but rather reduced serum inflammatory levels and hepcidin concentration, alleviated oxidative stress, increased body iron utilization, and improved semen quality in adult boars.

7.
Viruses ; 16(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39066222

ABSTRACT

Pneumoconiosis is a common occupational disease that can worsen with accompanying infection. Torque teno virus (TTV) is a prevalent human virus with multiple genotypes that can chronically and persistently infect individuals. However, the prevalence of TTV in pneumoconiosis patients is still unclear. This research aims to detect the presence and prevalence of TTV in the alveolar lavage fluid of pneumoconiosis patients in the Hunan Province of China using PCR. As a result, a 65.5% positive rate (19 out of 29) of TTV was detected. The TTV detection rate varies among different stages of silicosis and different pneumoconiosis patient ages. Nine novel TTV genomes ranging in size from 3719 to 3908 nt, named TTV HNPP1, HNPP2, HNPP3, HNPP4, HNPP5, HNPP6-1, HNPP6-2, HNPP7-1 and HNPP7-2, were identified. A genomic comparison and phylogenetic analysis indicated that these nine TTVs represent five different species with high genetic diversity which belong to the genus Alphatorquevirus. HNPP6-1 and HNPP6-2 belong to TTV3, HNPP5 belongs to TTV13, HNPP1 belongs to TTV24, HNPP4 belongs to TTV20, and the others belong to TTV19. The genomes of TTV HNPP1, HNPP6-1, and HNPP6-2 contain three putative open reading frames (ORFs) coding for proteins, ORF1, ORF2, and ORF3, while the other six TTV genomes contain two ORFs coding for proteins, ORF1 and ORF2. These results provide the first description of TTV epidemiology in pneumoconiosis patients in China. The newly identified TTV genome sequences reveal the high genetic diversity of TTV in pneumoconiosis patients and could contribute to a deeper understanding of TTV retention and infection in humans.


Subject(s)
Genome, Viral , Phylogeny , Pneumoconiosis , Torque teno virus , Humans , Torque teno virus/genetics , Torque teno virus/isolation & purification , Torque teno virus/classification , China/epidemiology , Pneumoconiosis/virology , Pneumoconiosis/epidemiology , Pneumoconiosis/genetics , Male , Middle Aged , Aged , DNA Virus Infections/virology , DNA Virus Infections/epidemiology , Genetic Variation , Genotype , Adult , Genomics/methods , Female , Bronchoalveolar Lavage Fluid/virology , DNA, Viral/genetics
8.
Rev Cardiovasc Med ; 25(3): 94, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39076939

ABSTRACT

Background: PCSK9 MaB (Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitor) may reduce the occurrence of major adverse cardiovascular events (MACEs) in patients diagnosed with acute coronary syndrome (ACS). In this meta-analysis, we conducted a thorough compilation of evidence from established clinical studies to evaluate PCSK9 MaB's capacity to control blood lipid levels and prevent MACEs in ACS patients. Methods: We conducted searches on Pubmed, Embase, the Cochrane Library, and Web of Science to identify relevant articles. Data from ACS patients were extracted using a standardized format for aggregating data. We calculated the risk ratio (RR) for MACE and assessed changes in blood lipid parameters. All statistical analyses were performed using RevMan. Results: 11 articles representing 5 trials were included in our systematic review and meta-analysis. When compared to a placebo, PCSK9 MaB significantly reduced the risk of MACEs ( I 2 = 0%, p = 0.63, RR [95% CI] = 0.88 [0.81, 0.97], p < 0.01) and the recurrence rate of ACS ( I 2 = 45%, p = 0.18, RR [95% CI] = 0.89 [0.83, 0.95], p < 0.01). Additionally, PCSK9 MaB notably reduced low-density lipoprotein cholesterol (LDL-C) levels (SMD [95% CI] = -2.12 [-2.32, -1.92], p < 0.01) and Apolipoprotein B (ApoB) levels (SMD [95% CI] = -1.83 [-2.48, -1.18], p < 0.01). Importantly, there were no significant differences in adverse reactions between the PCSK9 MaB group and the control group. Conclusions: PCSK9 MaB, whether used as a standalone treatment or in combination with other therapies, can effectively inhibit PCSK9. It substantially lowers key blood lipid parameters, including low-density lipoprotein (LDL), ApoB, and triglycerides, all without giving rise to notable safety concerns.

9.
Food Res Int ; 191: 114716, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059964

ABSTRACT

Dehydration is an effective method for the long-term storage and aroma retention of gonggan (Citrus sinensis Osb. 'Deqing Gonggan'), which is a Chinese variety of citrus, with unique and characteristic floral, fruity, and citrus flavors. However, the aroma profiles of gonggans prepared using oven- and freeze-drying, the most widely-used drying methods, remain unclear. In this study, a total of 911 volatile organic compounds (VOCs) were detected in dried gonggan. These were primarily composed of alcohols (7.69%), aldehydes (7.03%), esters (15.38%), ketones (7.58%), and terpenoids (23.19%). A total of 67 odorants contributed significantly to the overall aroma of dried gonggans, with the major odor qualities being detected as green, citrus, fruity, floral, and sweet. These were mainly attributed to the presence of aldehydes, esters, and terpenoids. Freeze-drying was more effective in maintaining the unique citrus and mandarin-like aromas attributed to compounds such as limonene, citrial, ß-myrcene, ß-pinene, and γ-terpinene. Moreover, (E,E)-2,4-decadienal had the highest relative odor activity value (rOAV) in freeze-dried gonggans, followed by (E)-2-nonenal, furaneol, (E, E)-2, 4-nonadienal, and E-2-undecenal. Oven-drying promoted the accumulation of terpenes such as octatriene, trans-ß-ocimene, cyclohexanone, copaene, and ɑ-irone, imparting a soft aroma of flowers, fruits, and sweet. Increasing the temperature led to an increase in existing VOCs or the generation of new VOCs through phenylpropanoid, terpenoid, and fatty acid metabolism. The findings of this study offer insights into an optimized procedure for producing high-quality dried gonggans. These insights can be valuable for the fruit-drying industry, particularly for enhancing the quality of dried fruits.


Subject(s)
Freeze Drying , Odorants , Terpenes , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Odorants/analysis , Terpenes/analysis , Fruit/chemistry , Citrus sinensis/chemistry , Desiccation/methods , Aldehydes/analysis , Gas Chromatography-Mass Spectrometry , Ketones/analysis , Bicyclic Monoterpenes/analysis , Esters/analysis , Alkadienes/analysis , Cyclohexenes/analysis , Food Handling/methods , Acyclic Monoterpenes , Cyclohexane Monoterpenes , Alkenes , Sesquiterpenes
10.
J Nanobiotechnology ; 22(1): 442, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068444

ABSTRACT

BACKGROUND: PD-1/PD-L1 blockade has become a powerful method to treat malignant tumors. However, a large proportion of patients still do not benefit from this treatment, due to low tumor immunogenicity and low tumor penetration of the agents. Recently, neutrophil elastase has been shown to induce robust tumor immunogenicity, while the insufficient enzyme activity at the tumor site restricted its anti-tumor application. Here, we designed polyethyleneimine-modified neutrophil elastase (PEI-elastase) loaded with PD-L1small interfering RNA (PD-L1 siRNA) for improving enzymatic activity and delivering siRNA to tumor, which was expected to solve the above-mentioned problems. RESULTS: We first demonstrated that PEI-elastase possessed high enzymatic activity, which was also identified as an excellent gene-delivery material. Then, we synthesized anti-tumor lipopolymer (P-E/S Lip) by encapsulating PEI-elastase and PD-L1siRNA with pH-responsive anionic liposomes. The P-E/S Lip could be rapidly cleaved in tumor acidic environment, leading to exposure of the PEI-elastase/PD-L1 siRNA. Consequently, PEI-elastase induced powerful tumor immunogenicity upon direct tumor killing with minimal toxicity to normal cells. In parallel, PEI-elastase delivered PD-L1siRNA into the tumor and reduced PD-L1 expression. Orthotopic tumor administration of P-E/S Lip not only attenuated primary tumor growth, but also produced systemic anti-tumor immune response to inhibit growth of distant tumors and metastasis. Moreover, intravenous administration of P-E/S Lip into mice bearing subcutaneous tumors leaded to an effective inhibition of established B16-F10 tumor and 4T1 tumor, with histological analyses indicating an absence of detectable toxicity. CONCLUSIONS: In our study, a protease-based nanoplatform was used to cooperatively provoke robust tumor immunogenicity and down-regulate PD-L1 expression, which exhibited great potential as a combination therapy for precisely treating solid tumors.


Subject(s)
B7-H1 Antigen , Immunotherapy , Polyethyleneimine , RNA, Small Interfering , Animals , Polyethyleneimine/chemistry , RNA, Small Interfering/chemistry , B7-H1 Antigen/metabolism , Mice , Immunotherapy/methods , Cell Line, Tumor , Female , Humans , Mice, Inbred BALB C , Liposomes/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Mice, Inbred C57BL , Gene Silencing
11.
Sci Total Environ ; 947: 174400, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38960204

ABSTRACT

Ecosystem services are strongly responsive to changes in land use intensity, especially for the service of water purification, which is highly sensitive to water pollutant emission. Increased nitrogen (N) application to cropland has potential impacts on the supply and demand for water purification through changes in land use intensity. However, there has been a lack of research focusing on the impacts of cropland N application on population exposure to water purification deficit and their cross-regional delivery network. Taking the Dongting Lake (DTL) Basin as an example, this study explored the spatial pattern of N exposure in the DTL Basin from 1990 to 2015 by integrating water purification deficit and population density. Changes in potential N exposure in 2050 were simulated based on population projection data from the Shared Socioeconomic Pathways (SSP1-5). N delivery pathways in the DTL Basin were clarified by constructing the N delivery network. The results showed that N exposure increased significantly with increasing N application in DTL Basin. The DTL surrounding area and lower reaches of the Xiangjiang River Basin had high increases of N exposure (50.2 % and 71.6 %) and high increases in N exposure due to increases in N application per unit (N influence coefficients exceeding 0.5). The lower reaches of the Xiangjiang River Basin with the highest population density had the smallest decrease in N exposure (1.4 %-11.1 %) in the SSP1-5 scenarios. During 1990-2015, the increase of N export to the DTL surrounding area was higher in the lower reach sub-basins of DTL Basin. N application had a stronger impact on N delivery processes in the lower reaches of DTL Basin. Managers should distribute N applications to basins with high N retention and low N export to the DTL surrounding area. This study confirmed the strong response of water purification deficit and its population exposure to N application, and provided decision-making guidelines for water quality enhancement in DTL Basin from a spatial planning perspective.

12.
Compr Rev Food Sci Food Saf ; : e13395, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042377

ABSTRACT

Peptidomics strategies with high throughput, sensitivity, and reproducibility are key tools for comprehensively analyzing peptide composition and potential functional activities in foods. Nevertheless, complex signal interference, limited ionization efficiency, and low abundance have impeded food-derived peptides' progress in food detection and analysis. As a result, novel functional materials have been born at the right moment that could eliminate interference and perform efficient enrichment. Of note, few studies have focused on developing peptide enrichment materials for food sample analysis. This work summarizes the development of endogenous peptide, phosphopeptide, and glycopeptide enrichment utilizing materials that have been employed extensively recently: organic framework materials, carbon-based nanomaterials, bio-based materials, magnetic materials, and molecularly imprinted polymers. It focuses on the limitations, potential solutions, and future prospects for application in food peptidomics of various advanced functional materials. The size-exclusion effect of adjustable aperture and the modification of magnetic material enhanced the sensitivity and selectivity of endogenous peptide enrichment and aided in streamlining the enrichment process and cutting down on enrichment time. Not only that, the immobilization of metal ions such as Ti4+ and Nb5+ enhanced the capture of phosphopeptides, and the introduction of hydrophilic groups such as arginine, L-cysteine, and glutathione into bio-based materials effectively optimized the hydrophilic enrichment of glycopeptides. Although a portion of the carefully constructed functional materials currently only exhibit promising applications in the field of peptide enrichment for analytical chemistry, there is reason to believe that they will further advance the field of food peptidomics through improved pre-treatment steps.

13.
Food Sci Nutr ; 12(7): 4810-4818, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055212

ABSTRACT

Quinoa is a full-nutrition food; however, its poor flavor and small size make it not the best food option for direct consumption. In this study, a quinoa snack (QS, a cake) was developed, and the aroma profile of the products was improved by adding jujube fruit powder (made from dried jujube fruits, from 5% to 30%). Gas chromatography mass spectrum (GC-MS) combined with electronic nose (e-nose) was applied for characterizing the aroma profiles of QS samples. Results showed a total of 26 aroma compounds were identified in QS samples by GC-MS, and 3-methylbutanol (from 1525 µg/kg in QS-30 to 3487 µg/kg in QS-0), ethanol (from 1126 µg/kg in QS-0 to 3581 µg/kg in QS-30), hexanal (from 125.6 µg/kg in QS-30 to 984.1 µg/kg in QS-0), and acetaldehyde (from 531.9 µg/kg in QS-30 to 191.1 µg/kg in QS-0) were common. The e-nose response of W1S (sensitive to methane, from 17.50 of QS-0 to 93.85 of QS-30) and W1W (sensitive to sulfur-organic compounds of e-nose, from 15.57 of QS-0 to 39.50 of QS-30) were significantly higher, and significant differences were presented among QS samples. In conclusion, the aroma profile of the QS sample was significantly (p < .05) enhanced by the addition of jujube powder, and QS-30 with the highest jujube content (30%) presented the strongest aroma profile. Moreover, QS samples with different additions of jujube powders could be well distinguished by principal component analysis (PCA), and the combination of e-nose and GC-MS was effective in the volatile profile analysis of QS samples.

15.
ACS Nano ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007545

ABSTRACT

The development of cost-efficient, long-lifespan, and all-climate sodium-ion batteries is of great importance for advancing large-scale energy storage but is plagued by the lack of suitable cathode materials. Here, we report low-cost Na-rich Mn-based Prussian blue analogues with superior rate capability and ultralong cycling stability over 10,000 cycles via structural optimization with electrochemically inert Ni atoms. Their thermal stability, all-climate properties, and potential in full cells are investigated in detail. Multiple in situ characterizations reveal that the outstanding performances benefit from their highly reversible three-phase transformations and trimetal (Mn-Ni-Fe) synergistic effects. In addition, a high sodium diffusion coefficient and a low volume distortion of 2.3% are observed through in situ transmission electron microscopy and first-principles calculations. Our results provide insights into the structural engineering of Prussian blue analogues for advanced sodium-ion batteries in large-scale energy storage applications.

16.
Sci Rep ; 14(1): 16041, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992098

ABSTRACT

In the realm of prognosticating the remaining useful life (RUL) of pivotal components, such as aircraft engines, a prevalent challenge persists where the available historical life data often proves insufficient. This insufficiency engenders obstacles such as impediments in performance degradation feature extraction, inadequacies in capturing temporal relationships comprehensively, and diminished predictive accuracy. To address this issue, a 1D CNN-GRU prediction model for few-shot conditions is proposed in this paper. In pursuit of more comprehensive data feature extraction and enhanced RUL prognostication precision, the Convolutional Neural Network (CNN) is selected for its capacity to discern high-dimensional features amid the intricate dynamics of the data. Concurrently, the Gated Recurrent Unit (GRU) network is leveraged for its robust capability in extracting temporal features inherent within the data. We combine the two to construct a CNN-GRU hybrid network. Moreover, the integration of data distribution alongside correlation and monotonicity indices is employed to winnow the input of multi-sensor monitoring parameters into the CNN-GRU network. Finally, the engine RULs are predicted by the trained model. In this paper, experiments are conducted on a sub-dataset of the National Aeronautics and Space Administration (NASA) C-MAPSS multi-constraint dataset to validate the effectiveness of the method. Experimental results have demonstrated that this method has high accuracy in RUL prediction tasks, which can powerfully demonstrate its effectiveness.

17.
Materials (Basel) ; 17(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38998439

ABSTRACT

The effect of the addition of alkali earth element Ca on the microstructure and mechanical properties of extruded AZ91-0.4Ce-xCa (x = 0, 0.4, 0.8, 1.2 wt.%) alloys was studied by using scanning electron microscopy, transmission electron microscopy, and tensile tests. The results showed that the addition of Ca could significantly refine the second phase and grain size of the extruded AZ91-0.4Ce alloy. The refinement effect was most obvious when 0.8 wt.% of Ca was added, and the recrystallized grain size was 4.75 µm after extrusion. The addition of Ca resulted in the formation of a spherical Al2Ca phase, which effectively suppressed the precipitation of the ß-Mg17Al12 phase, promoted dynamic recrystallization and grain refinement, impeded dislocation motion, and exerted a positive influence on the mechanical properties of the alloy. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of the AZ91-0.4Ce-0.8Ca alloy were 238.7 MPa, 338.3 MPa, and 10.8%, respectively.

18.
Front Microbiol ; 15: 1394775, 2024.
Article in English | MEDLINE | ID: mdl-38946905

ABSTRACT

Introduction: Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen causing nosocomial infection in the clinic. The occurrence rate of antibiotic resistance is increasing year by year, resulting in a highly serious situation of bacterial resistance. Methods: To better understand the local epidemiology of multidrug-resistant A. baumannii, an investigation was conducted on the antibiotic resistance of different types of A. baumannii and its relationship with the genes of A. baumannii. Furthermore, the molecular mechanism underlying antibiotic resistance in A. baumannii was investigated through transcriptome analysis. Results: These results showed that a total of 9 STs were detected. It was found that 99% of the strains isolated in the hospital belonged to the same STs, and the clone complex CC208 was widely distributed in various departments and all kinds of samples. Furthermore, these A. baumannii strains showed high resistance to ertapenem, biapenem, meropenem, and imipenem, among which the resistance to ertapenem was the strongest. The detection rate of bla OXA-51 gene in these carbapenem resistance A. baumannii (CRAB) reached 100%; Additionally, the transcriptome results showed that the resistance genes were up-regulated in resistance strains, and these genes involved in biofilm formation, efflux pumps, peptidoglycan biosynthesis, and chaperonin synthesis. Discussion: These results suggest that the CC208 STs were the main clonal complex, and showed high carbapenem antibiotic resistance. All these resistant strains were distributed in various departments, but most of them were distributed in intensive care units (ICU). The bla OXA-23 was the main antibiotic resistance genotype; In summary, the epidemic trend of clinical A. baumannii in Guiyang, China was analyzed from the molecular level, and the resistance mechanism of A. baumannii to carbapenem antibiotics was analyzed with transcriptome, which provided a theoretical basis for better control of A. baumannii.

19.
Front Immunol ; 15: 1413177, 2024.
Article in English | MEDLINE | ID: mdl-38903498

ABSTRACT

Introduction: Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing ß cells. Toll-like receptor 9 (TLR9) plays a role in autoimmune diseases, and B cell-specific TLR9 deficiency delays T1D development. Gut microbiota are implicated in T1D, although the relationship is complex. However, the impact of B cell-specific deficiency of TLR9 on intestinal microbiota and the impact of altered intestinal microbiota on the development of T1D are unclear. Objectives: This study investigated how gut microbiota and the intestinal barrier contribute to T1D development in B cell-specific TLR9-deficient NOD mice. Additionally, this study explored the role of microbiota in immune regulation and T1D onset. Methods: The study assessed gut permeability, gene expression related to gut barrier integrity, and gut microbiota composition. Antibiotics depleted gut microbiota, and fecal samples were transferred to germ-free mice. The study also examined IL-10 production, Breg cell differentiation, and their impact on T1D development. Results: B cell-specific TLR9-deficient NOD mice exhibited increased gut permeability and downregulated gut barrier-related gene expression. Antibiotics restored gut permeability, suggesting microbiota influence. Altered microbiota were enriched in Lachnospiraceae, known for mucin degradation. Transferring this microbiota to germ-free mice increased gut permeability and promoted IL-10-expressing Breg cells. Rag-/- mice transplanted with fecal samples from Tlr9 fl/fl Cd19-Cre+ mice showed delayed diabetes onset, indicating microbiota's impact. Conclusion: B cell-specific TLR9 deficiency alters gut microbiota, increasing gut permeability and promoting IL-10-expressing Breg cells, which delay T1D. This study uncovers a link between TLR9, gut microbiota, and immune regulation in T1D, with implications for microbiota-targeted T1D therapies.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Interleukin-10 , Mice, Inbred NOD , Toll-Like Receptor 9 , Animals , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Gastrointestinal Microbiome/immunology , Interleukin-10/metabolism , Mice , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/microbiology , Mice, Knockout , B-Lymphocytes, Regulatory/immunology , Female , B-Lymphocytes/immunology , B-Lymphocytes/metabolism
20.
Food Chem ; 455: 139917, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838622

ABSTRACT

Crocus sativus L. is a both medicinal and food bulbous flower whose qualities are geographically characterized. However, identification involving different places of origin of such substances is currently limited to single-omics mediated content analysis. Integrated metabolomics and proteomics, 840 saffron samples from six countries (Spain, Greece, Iran, China, Japan, and India) were analyzed using the QuEChERS extraction method. A total of 77 differential metabolites and 14 differential proteins were identified. The limits of detection of the method were 1.33 to 8.33 µg kg-1, and the recoveries were 85.56% to 105.18%. Using homology modeling and molecular docking, the Gln84, Lys195, Val182 and Pro184 sites of Crocetin glucosyltransferase 2 were found to be the targets of crocetin binding. By multivariate statistical analysis (PCA and PLS-DA), different saffron samples were clearly distinguished. The results provided the basis for the selection and identification of high quality saffron from different producing areas.


Subject(s)
Carotenoids , Crocus , Molecular Docking Simulation , Vitamin A , Crocus/chemistry , Crocus/metabolism , Carotenoids/metabolism , Carotenoids/chemistry , Vitamin A/analogs & derivatives , Vitamin A/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/chemistry , Biotransformation , Plant Proteins/metabolism , Plant Proteins/chemistry , Flowers/chemistry , Flowers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL