Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Phys Rev Lett ; 132(13): 130603, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38613293

In the quest to build general-purpose photonic quantum computers, fusion-based quantum computation has risen to prominence as a promising strategy. This model allows a ballistic construction of large cluster states which are universal for quantum computation, in a scalable and loss-tolerant way without feed forward, by fusing many small n-photon entangled resource states. However, a key obstacle to this architecture lies in efficiently generating the required essential resource states on photonic chips. One such critical seed state that has not yet been achieved is the heralded three-photon Greenberger-Horne-Zeilinger (3-GHZ) state. Here, we address this elementary resource gap, by reporting the first experimental realization of a heralded 3-GHZ state. Our implementation employs a low-loss and fully programmable photonic chip that manipulates six indistinguishable single photons of wavelengths in the telecommunication regime. Conditional on the heralding detection, we obtain the desired 3-GHZ state with a fidelity 0.573±0.024. Our Letter marks an important step for the future fault-tolerant photonic quantum computing, leading to the acceleration of building a large-scale optical quantum computer.

2.
J Phys Chem Lett ; 15(9): 2301-2310, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38386516

The brain's function can be dynamically reconfigured through a unified neuron-synapse architecture, enabling task-adaptive network-level topology for energy-efficient learning and inferencing. Here, we demonstrate an organic neuristor utilizing a ferroelectric-electrolyte dielectric interface. This neuristor enables tunable short- to long-term plasticity and reconfigurable logic-in-memory functions by controlling the interfacial interaction between electrolyte ions and ferroelectric dipoles. Notably, the short-term plasticity of the organic neuristor allows for power-efficient reservoir computing in edge-computing scenarios, exhibiting impressive recognition accuracy, including images (90.6%) and acoustic signals (97.7%). For high-performance computing tasks, the neuristor based on long-term plasticity and logic-in-memory operations can construct all of the hardware circuits of a binarized neural network (BNN) within a unified framework. The BNN demonstrates excellent noise tolerance, achieving high recognition accuracies of 99.2% and 86.4% on the MNIST and CIFAR-10 data sets, respectively. Consequently, our research sheds light on the development of power-efficient artificial intelligence systems.

3.
Phys Rev Lett ; 131(15): 150601, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37897783

We report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for the characterization of the noisy Gaussian boson sampling. In the quantum computational advantage regime, we use Bayesian tests and correlation function analysis to validate the samples against all current classical spoofing mockups. Estimating with the best classical algorithms to date, generating a single ideal sample from the same distribution on the supercomputer Frontier would take ∼600 yr using exact methods, whereas our quantum computer, Jiǔzhang 3.0, takes only 1.27 µs to produce a sample. Generating the hardest sample from the experiment using an exact algorithm would take Frontier∼3.1×10^{10} yr.

4.
Proc Natl Acad Sci U S A ; 120(41): e2304534120, 2023 10 10.
Article En | MEDLINE | ID: mdl-37782793

Aberrant transcripts expression of the m6A methyltransferase complex (MTC) is widely found across human cancers, suggesting a dysregulated signaling cascade which integrates m6A epitranscriptome to drive tumorigenesis. However, the responsible transcriptional machinery directing the expression of distinct MTC subunits remains unclear. Here, we identified an unappreciated interplay between the histone acetyl-lysine reader BRD4 and the m6A writer complex across human cancers. BRD4 directly stimulates transcripts expression of seven MTC subunits, allowing the maintenance of the nuclear writer complex integrity. Upon BET inhibition, this BRD4-MTC signaling cascade accounts for global m6A reduction and the subsequent dynamic alteration of BRD4-dependent transcriptome, resulting in impaired DNA damage response that involves activation of homologous recombination (HR) repair and repression of apoptosis. We further demonstrated that the combined synergy upon BET/PARP inhibition largely relies on disrupted m6A modification of HR and apoptotic genes, counteracting PARP inhibitor (PARPi) resistance in patient-derived xenograft models. Our study revealed a widespread active cross-talk between BRD4-dependent epigenetic and MTC-mediated epitranscriptomic networks, which provides a unique therapeutic vulnerability that can be leveraged in combined DNA repair-targeted therapy.


Antineoplastic Agents , Bromodomain Containing Proteins , Nuclear Proteins , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Repair , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Epigenesis, Genetic , Bromodomain Containing Proteins/genetics , Bromodomain Containing Proteins/metabolism , Animals
5.
Langmuir ; 39(36): 12807-12816, 2023 09 12.
Article En | MEDLINE | ID: mdl-37625097

A multifunctional nanopesticide delivery system is considered to be a novel and efficient tool for controlling pests in modern agriculture. In this study, a mesoporous silica nanosheet (H-MSN) carrier for intelligent delivery of pesticides was prepared by the sol-gel method. The prepared H-MSN carrier had obvious hexagonal flat structure, with a specific surface area of 759.9 m2/g, a transverse diameter of about 340 nm, a thickness of about 80 nm, and regular channels being perpendicular to the plane. Polyethylene glycol diacrylate (PEGDA) and sulfhydryl-modified polyethylenimide (PEI-SH) were used to block the insecticide after loading the insecticide imidacloprid (IMI). The introduction of hydrophilic PEI-SH/PEGDA greatly improved the leaf wettability and adhesion ability of H-MSN. The retention amount of IMI@H-MSN@PEI-SH/PEGDA on cucumber and cabbage leaves was up to 46.0 mg/cm2 and 19.0 mg/cm2, respectively. IMI@H-MSN@PEI-SH/PEGDA showed pH- and GSH-responsive release. Compared with pure IMI, IMI entrapped in MSN carriers has favorable biocompatibility and antiphotolytic properties.


Insecticides , Pesticides , Neonicotinoids
6.
Colloids Surf B Biointerfaces ; 228: 113425, 2023 Aug.
Article En | MEDLINE | ID: mdl-37384965

Stimuli-responsive controlled release systems have received extensive attention to improve the pesticide bioavailability and minimize environmental pollution. Herein, a multiple stimuli-responsive IMI@HCuS@mSiO2 @ -ss-CßCD delivery system was constructed using modified carboxymethyl ß-cyclodextrin (CßCD-ss-COOH) as sealing materials, hollow copper sulfide nanoparticles with amino-functionalized mesoporous silica shell (HCuS@mSiO2-NH2) as carriers and imidacloprid (IMI) as the model drug. The cavity structure of HCuS@mSiO2-NH2 would provide a large space for pesticide loading. The results revealed that HCuS@mSiO2-ss-CßCD was approximately 230 nm in size and the loading efficiency for IMI was 25.7%, and exhibited better biosafety on bacteria and seed. HCuS carriers were also served as photothermal agent and possessed high photothermal conversion effect (η = 38.4%). IMI@HCuS@mSiO2 @ -ss-CßCD displayed excellent foliage adhesion and multiple stimuli-responsive release properties to pH, α-amylase, GSH, and NIR. The photostability of IMI embedded in CuS@mSiO2 @ -ss-CßCD was approximately 10 times that of IMI solution. This work provides an efficient nanoplatform for realizing pesticide delivery.


Antineoplastic Agents , Nanoparticles , Pesticides , Antineoplastic Agents/chemistry , Doxorubicin/chemistry , Drug Delivery Systems , Copper/chemistry , Silicon Dioxide/chemistry , Phototherapy , Nanoparticles/chemistry , Sulfides/chemistry , Porosity
7.
Colloids Surf B Biointerfaces ; 224: 113213, 2023 Apr.
Article En | MEDLINE | ID: mdl-36870269

Nanopesticides formulation has been applied in modern agriculture, but the effective deposition of pesticides on plant surfaces is still a critical challenge. Here, we developed a cap-like mesoporous silica (C-mSiO2) carrier for pesticide delivery. The C-mSiO2 carriers with surface amino groups present uniform cap-like shape and have an mean diameter of 300 nm and width of 100 nm. This structure would reduce the rolling and bouncing of carriers on plant leaves, leading to improving the foliage deposition and retention. After loading dinotefuran (DIN), polydopamine (PDA) was used to encapsulate the pesticide (DIN@C-mSiO2@PDA). The C-mSiO2 carriers exhibit high drug loading efficiency (24.7%) and benign biocompatibility on bacteria and seed. Except for pH/NIR response release, the DIN@C-mSiO2@PDA exhibited excellent photostability under UV irradiation. Moreover, the insecticidal activity of DIN@C-mSiO2@PDA was comparable to that of pure DIN and DIN commercial suspension (CS-DIN). This carrier system has the potential for improving the foliage retention and utilization of pesticides.


Nanoparticles , Pesticides , Pesticides/pharmacology , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Drug Carriers/chemistry , Porosity
8.
Phys Rev Lett ; 130(7): 070801, 2023 Feb 17.
Article En | MEDLINE | ID: mdl-36867807

Quantum metrology employs quantum resources to enhance the measurement sensitivity beyond that can be achieved classically. While multiphoton entangled N00N states can in principle beat the shot-noise limit and reach the Heisenberg limit, high N00N states are difficult to prepare and fragile to photon loss which hinders them from reaching unconditional quantum metrological advantages. Here, we combine the idea of unconventional nonlinear interferometers and stimulated emission of squeezed light, previously developed for the photonic quantum computer Jiuzhang, to propose and realize a new scheme that achieves a scalable, unconditional, and robust quantum metrological advantage. We observe a 5.8(1)-fold enhancement above the shot-noise limit in the Fisher information extracted per photon, without discounting for photon loss and imperfections, which outperforms ideal 5-N00N states. The Heisenberg-limited scaling, the robustness to external photon loss, and the ease-of-use of our method make it applicable in practical quantum metrology at a low photon flux regime.

9.
Mikrochim Acta ; 189(10): 376, 2022 09 08.
Article En | MEDLINE | ID: mdl-36074274

A novel near-infrared (NIR) light-triggered smart nanoplatform has been developed for cancer targeting and imaging-guided combined photothermal-chemo treatment. Notably, Ag2S has a dual function of photothermal therapy and fluorescence imaging, which greatly simplifies the structure of the system. It can emit fluorescence at 820 nm under an excitation wavelength of 560 nm. The phase-change molecule of 1-tetradecanol (TD) is introduced as a temperature-sensitive gatekeeper to provide the nanocarrier with controlled release capability of doxorubicin (DOX). The nanocarrier (HAg2S@mSiO2-TD/DOX) shows a high drug loading capacity of 26.3% and exhibits an apparent NIR-responsive DOX release property. Under NIR irradiation, the photothermal effect of HAg2S nanocores facilitated the release of DOX through the melting of TD. The cytotoxicity test shows that the nanocarriers have good biocompatibility. As the same time, the synergistic combination leads to a better cancer inhibition effect than individual therapy alone in vitro. Cell uptake tests indicate that the carriers have excellent fluorescence imaging ability and high cellular uptake for HepG2 cells. This work provides a new strategy for the fabrication of smart nanocarriers with simple structures for fluorescence-mediated combination cancer therapy. Fabrication of a smart drug delivery system based on hollow Ag2S@mSiO2 nanoparticles for fluorescence-guided synergistic photothermal chemotherapy.


Nanoparticles , Neoplasms , Doxorubicin/chemistry , Drug Delivery Systems/methods , Fluorescence , Humans , Nanoparticles/chemistry , Neoplasms/drug therapy
10.
Nanomaterials (Basel) ; 12(12)2022 Jun 15.
Article En | MEDLINE | ID: mdl-35745406

The design and preparation of multifunctional drug carriers for combined photothermal-chemotherapy of cancer have attracted extensive attention over the past few decades. However, the development of simple-structured stimuli-responsive theranostic agents as both photothermal agents and chemotherapeutic agents remains a big challenge. Herein, a novel double-shelled nanocarrier composed of hollow Ag2S (HAg2S) nanospheres and a mesoporous polydopamine (MPDA) exterior shell was fabricated through a facile process. Notably, HAg2S possesses both fluorescence and photothermal properties. MPDA acts as a drug carrier and photothermal agent. Meanwhile, the cavity structure between HAg2S and MPDA provides more space for drug loading. The nanocarrier presents a high drug loading rate of 23.4%. It exhibits an apparent pH-responsive DOX release property due to the acidic sensitivity of PDA. In addition, the release of DOX is promoted under NIR irradiation, which is attributed to the heating action generated by the photothermal effect of HAg2S and MPDA. The cytotoxicity test shows that the nanocarriers possess good biocompatibility. Compared with single photothermal therapy or chemotherapy, the combined treatment represents a synergistic effect with higher therapeutic efficacy. In addition, the nanocarriers exhibit excellent fluorescence imaging capability and can target HepG2 cells. These simple-structured smart nanocarriers have a great potential for fluorescence-mediated combination cancer therapy.

11.
J Comput Chem ; 43(4): 289-302, 2022 02 05.
Article En | MEDLINE | ID: mdl-34862652

Buchwald-Hartwig amination reaction catalyzed by palladium plays an important role in drug synthesis. In the last few years, machine learning-assisted strategies emerged and quickly gained attention. In this article, an importance and relevance-based integrated feature screening method is proposed to effectively filter high-dimensional feature descriptor data. Then, a regularized machine learning boosting tree model, eXtreme Gradient Boosting, is introduced to intelligently predict reaction performance in multidimensional chemistry space. Furthermore, convergence, interpretability, generalization, and the internal association between reaction conditions and yields are excavated, which provides intelligent assistance for the optimal design of coupling reaction system and evaluating the reaction conditions. Compared with recently published results, the proposed method requires fewer feature descriptors, takes less time, and achieves more accurate prediction accuracy.


Amines/chemical synthesis , Amination , Amines/chemistry , Catalysis , Machine Learning , Palladium
13.
Phys Rev Lett ; 127(23): 230503, 2021 Dec 03.
Article En | MEDLINE | ID: mdl-34936806

Quantum self-testing is a device-independent way to certify quantum states and measurements using only the input-output statistics, with minimal assumptions about the quantum devices. Because of the high demand on tolerable noise, however, experimental self-testing was limited to two-photon systems. Here, we demonstrate the first robust self-testing for multiphoton genuinely entangled quantum states. We prepare two examples of four-photon graph states, the Greenberger-Horne-Zeilinger states with a fidelity of 0.957(2) and the linear cluster states with a fidelity of 0.945(2). Based on the observed input-output statistics, we certify the genuine four-photon entanglement and further estimate their qualities with respect to realistic noise in a device-independent manner.

14.
Phys Rev Lett ; 127(18): 180502, 2021 Oct 29.
Article En | MEDLINE | ID: mdl-34767431

We report phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon detection events out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light source is developed, exploring the idea of stimulated emission of squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. The obtained samples are efficiently validated by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our GBS experiment passes a nonclassicality test based on inequality constraints, and we reveal nontrivial genuine high-order correlations in the GBS samples, which are evidence of robustness against possible classical simulation schemes. This photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to ∼10^{43}, and a sampling rate ∼10^{24} faster than using brute-force simulation on classical supercomputers.

15.
Front Neurosci ; 15: 663962, 2021.
Article En | MEDLINE | ID: mdl-34326715

Human immunodeficiency virus envelope glycoprotein 120 (gp120) leads to hyperalgesia. Long non-coding RNAs are characterized by the lack of a protein-coding sequence and may contribute to the development and maintenance of inflammatory and neuroinflammatory pain. Rats with neuroinflammatory pain were established by gp120 treatment, which is featured by intensified pain behaviors. Long non-coding RNA uc.48+ was increased in the dorsal root ganglia of gp120-treated rats, and small interfering RNA that targets uc.48+ markedly alleviated hyperalgesia in gp120-treated rats. Notably, uc.48+ overexpression increased P2Y12 expression in control rats dorsal root ganglia and induced hyperalgesia. Uc.48+ small interfering RNA inhibited P2Y12 expression in gp120-treated rats. Uc.48+ potentiated P2Y12 receptor functions in the neurons and heterologous cells. Therefore, uc.48+ siRNA treatment reduced the upregulation of P2Y12 expression and function in DRG neurons, and, hence, alleviated hyperalgesia in gp120-treated rats.

16.
ACS Appl Bio Mater ; 4(8): 6549-6557, 2021 08 16.
Article En | MEDLINE | ID: mdl-35006892

The fabrication of highly active and free-standing surface-enhanced Raman scattering (SERS) substrates in a simple and low-cost manner has been a crucial and urgent challenge in recent years. Herein, SiO2 nanofiber substrates modified with size-tunable Ag nanoparticles were prepared by the combination of electrospinning and in situ chemical reduction. The results demonstrate the presence and uniform adsorption of Ag nanoparticles on the SiO2 matrix surface. The free-standing composite nanofibrous substrates show high-performance SERS response toward 4-mercaptophenol and 4-mercaptobenzoic acid, and the detection limit can be as low as 10-10 mol/L. Most importantly, the as-prepared substrate as a versatile SERS platform can realize label-free detection of bio-macromolecules of bacteria, i.e., Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the substrates also possess outstanding antibacterial activities against S. aureus and E. coli. Briefly, the significance of this study is that size-tunable Ag nanoparticles can be decorated on SiO2 nanofiber surfaces with triethanolamine as a bridging and reducing agent through a one-pot reaction, and the as-prepared nanofibrous membranes are expected to act as a candidate for label-free SERS detection as well as antibacterial dressing.


Escherichia coli Infections , Metal Nanoparticles , Nanofibers , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Bandages , Escherichia coli , Humans , Metal Nanoparticles/chemistry , Nanofibers/chemistry , Silicon Dioxide , Silver/chemistry , Staphylococcus aureus
17.
Polymers (Basel) ; 12(12)2020 Dec 16.
Article En | MEDLINE | ID: mdl-33339343

In this paper, we propose a facile and cost-effective electrospinning technique to fabricate surface-enhanced Raman scattering (SERS) substrates, which is appropriate for multiple analytes detection. First of all, HAuCl4∙3H2O was added into the TEOS/PVP precursor solution, and flexible SiO2 nanofibers incorporated with gold nanoparticles (SiO2@Au) were prepared by electrospinning and calcination. Subsequently, the nanofibrous membranes were immersed in the tannic acid and 3-aminopropyltriethoxysilane solution for surface modification through Michael addition reaction. Finally, the composite nanofibers (Ag@T-A@SiO2@Au) were obtained by the in-situ growth of Ag nanoparticles on the surfaces of nanofibers with tannic acid as a reducing agent. Due to the synergistic enhancement of Au and Ag nanoparticles, the flexible and self-supporting composite nanofibrous membranes have excellent SERS properties. Serving as SERS substrates, they are extremely sensitive to the detection of 4-mercaptophenol and 4-mercaptobenzoic acid, with an enhancement factor of 108. Moreover, they could be utilized to detect analytes such as pesticide thiram at a low concentration of 10-8 mol/L, and the substrates retain excellent Raman signals stability during the durability test of 60 days. Furthermore, the as-fabricated substrates, as a versatile SERS platform, could be used to detect bacteria of Staphylococcus aureus without a specific and complicated bacteria-aptamer conjugation procedure, and the detection limit is up to 103 colony forming units/mL. Meanwhile, the substrates also show an excellent repeatability of SERS response for S. aureus organelles. Briefly, the prime novelty of this work is the fabrication of Au/Ag bimetallic synergetic enhancement substrates as SERS platform for versatile detection with high sensitivity and stability.

18.
Science ; 370(6523): 1460-1463, 2020 12 18.
Article En | MEDLINE | ID: mdl-33273064

Quantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the quantum computational advantage. We performed Gaussian boson sampling by sending 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and random matrix-the whole optical setup is phase-locked-and sampling the output using 100 high-efficiency single-photon detectors. The obtained samples were validated against plausible hypotheses exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum computer, Jiuzhang, generates up to 76 output photon clicks, which yields an output state-space dimension of 1030 and a sampling rate that is faster than using the state-of-the-art simulation strategy and supercomputers by a factor of ~1014.

19.
Phys Rev Lett ; 125(21): 210502, 2020 Nov 20.
Article En | MEDLINE | ID: mdl-33274970

Quantum no-cloning, the impossibility of perfectly cloning an arbitrary unknown quantum state, is one of the most fundamental limitations due to the laws of quantum mechanics, which underpin the physical security of quantum key distribution. Quantum physics does allow, however, approximate cloning with either imperfect state fidelity and/or probabilistic success. Whereas approximate quantum cloning of single-particle states has been tested previously, experimental cloning of quantum entanglement-a highly nonclassical correlation-remained unexplored. Based on a multiphoton linear optics platform, we demonstrate quantum cloning of two-photon entangled states for the first time. Remarkably our results show that one maximally entangled photon pair can be broadcast into two entangled pairs, both with state fidelities above 50%. Our results are a key step towards cloning of complex quantum systems, and are likely to provide new insights into quantum entanglement.

20.
Nano Lett ; 20(1): 152-157, 2020 Jan 08.
Article En | MEDLINE | ID: mdl-31841348

We demonstrate fourth-order quantum beat between sunlight and single photons from a quantum dot. With a fast time-resolved detection system, we observed high-visibility quantum beat between the independent photons of different frequencies from the two astronomically separated light sources. The temporal dynamics of the beat oscillation indicate the coherent behavior of the interfering photons, and the raw visibility of two-photon interference shows violation of the classical limit with a frequency mismatch of three-times the line width.

...