Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
J Transl Med ; 22(1): 589, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915068

ABSTRACT

BACKGROUND: Predictive markers for fecal microbiota transplantation (FMT) outcomes in patients with active ulcerative colitis (UC) are poorly defined. We aimed to investigate changes in gut microbiota pre- and post-FMT and to assess the potential value in determining the total copy number of fecal bacterial siderophore genes in predicting FMT responsiveness. METHODS: Patients with active UC (Mayo score ≥ 3) who had undergone two FMT procedures were enrolled. Fecal samples were collected before and 8 weeks after each FMT session. Patients were classified into clinical response and non-response groups, based on their Mayo scores. The fecal microbiota profile was accessed using metagenomic sequencing, and the total siderophore genes copy number via quantitative real-time polymerase chain reaction. Additionally, we examined the association between the total siderophore genes copy number and FMT efficacy. RESULTS: Seventy patients with UC had undergone FMT. The clinical response and remission rates were 50% and 10% after the first FMT procedure, increasing to 72.41% and 27.59% after the second FMT. The cumulative clinical response and clinical remission rates were 72.86% and 25.71%. Compared with baseline, the response group showed a significant increase in Faecalibacterium, and decrease in Enterobacteriaceae, consisted with the changes of the total bacterial siderophore genes copy number after the second FMT (1889.14 vs. 98.73 copies/ng, P < 0.01). Virulence factor analysis showed an enriched iron uptake system, especially bacterial siderophores, in the pre-FMT response group, with a greater contribution from Escherichia coli. The total baseline copy number was significantly higher in the response group than non-response group (1889.14 vs. 94.86 copies/ng, P < 0.01). A total baseline copy number cutoff value of 755.88 copies/ng showed 94.7% specificity and 72.5% sensitivity in predicting FMT responsiveness. CONCLUSIONS: A significant increase in Faecalibacterium, and decrease in Enterobacteriaceae and the total fecal siderophore genes copy number were observed in responders after FMT. The siderophore genes and its encoding bacteria may be of predictive value for the clinical responsiveness of FMT to active ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Siderophores , Humans , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/genetics , Male , Female , Feces/microbiology , Adult , Middle Aged , Gastrointestinal Microbiome/genetics , Siderophores/metabolism , Treatment Outcome , Bacteria/genetics , Genes, Bacterial , Gene Dosage , ROC Curve
2.
Biomater Res ; 28: 0035, 2024.
Article in English | MEDLINE | ID: mdl-38840655

ABSTRACT

Reversal of endothelial cell (EC) dysfunction under high-glucose (HG) conditions to achieve angiogenesis has remained a big challenge in diabetic ulcers. Herein, exosomes derived from medicinal plant ginseng (GExos) were shown as excellent nanotherapeutics with biomimetic cell membrane-like structures to be able to efficiently transfer the encapsulated active substances to ECs, resulting in a marked reprogramming of glycolysis by up-regulating anaerobic glycolysis and down-regulating oxidative stress, which further restore the proliferation, migration, and tubule formation abilities of ECs under HG conditions. In vivo, GExos enhance the angiogenesis and nascent vessel network reconstruction in full-thickness diabetic complicated skin ulcer wounds in mice with high biosafety. GExos were shown as promising nanotherapeutics in stimulating glycolysis reprogramming-mediated angiogenesis in diabetic ulcers, possessing wide application potential for reversing hyperglycemic dysangiogenesis and stimulating vascular regeneration.

3.
NPJ Biofilms Microbiomes ; 10(1): 51, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902226

ABSTRACT

Bacteria induced metamorphosis observed in nearly all marine invertebrates. However, the mechanism of bacteria regulating the larvae-juvenile metamorphosis remains unknown. Here, we test the hypothesis that c-di-GMP, a ubiquitous bacterial second-messenger molecule, directly triggers the mollusc Mytilus coruscus larval metamorphosis via the stimulator of interferon genes (STING) receptor. We determined that the deletion of c-di-GMP synthesis genes resulted in reduced c-di-GMP levels and biofilm-inducing activity on larval metamorphosis, accompanied by alterations in extracellular polymeric substances. Additionally, c-di-GMP extracted from tested varying marine bacteria all exhibited inducing activity on larval metamorphosis. Simultaneously, through pharmacological and molecular experiments, we demonstrated that M. coruscus STING (McSTING) participates in larval metamorphosis by binding with c-di-GMP. Our findings reveal that new role of bacterial c-di-GMP that triggers mussel larval metamorphosis transition, and extend knowledge in the interaction of bacteria and host development in marine ecosystems.


Subject(s)
Biofilms , Cyclic GMP , Larva , Metamorphosis, Biological , Mytilus , Animals , Larva/microbiology , Larva/growth & development , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Biofilms/growth & development , Mytilus/microbiology , Mytilus/growth & development , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/growth & development , Membrane Proteins/genetics , Membrane Proteins/metabolism
4.
Mil Med Res ; 11(1): 34, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831462

ABSTRACT

The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for advancing our understanding and utilization of it. Although culture-independent approaches have been developed, a pure culture is required for in-depth analysis of disease mechanisms and the development of biotherapy strategies. Currently, microbiome research faces the challenge of expanding the existing database of culturable gut microbiota and rapidly isolating target microorganisms. This review examines the advancements in gut microbe isolation and cultivation techniques, such as culturomics, droplet microfluidics, phenotypic and genomics selection, and membrane diffusion. Furthermore, we evaluate the progress made in technology for identifying gut microbes considering both non-targeted and targeted strategies. The focus of future research in gut microbial culturomics is expected to be on high-throughput, automation, and integration. Advancements in this field may facilitate strain-level investigation into the mechanisms underlying diseases related to gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Humans
5.
Opt Express ; 32(9): 15774-15787, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859219

ABSTRACT

Ellipsometric measurement of transparent samples suffers from substrate backside reflection challenges, including incoherent and partial superposition issues. The recently developed angle-resolved ellipsometry (ARE) can naturally eliminate the backside reflections of substrates with a micro-spot equivalent thickness or thicker; however, for thinner substrates, ARE working with general incoherent backside reflection models shows significant inaccuracy or measurement failure. In this paper, an incoherent partial superposition (IPS) model is proposed to characterize the optical superposition effect between the frontside and uncertain backside reflections from an unknown substrate. IPS introduces a cosine-like correction of the backside reflection, corresponding to the overlapping-area change of backside and frontside reflections along with incident angles. Benefiting from ARE's wide-angle spectral imaging capability, IPS achieves single-shot measurement of thin film thicknesses on transparent substrates of unknown thickness. An ARE system was built and calibrated regarding the linear relationship between the cosine-corrected angular frequencies and substrate thicknesses. Then, commercial ITO films on glasses of different thicknesses ranging from 200 to 1000 µm were measured. Experimental results show that IPS-ARE results in a root-mean-square accuracy error of ∼1 nm in film thickness measurement and provides a ∼77% error reduction from general incoherent backside reflection models.

6.
Gut Microbes ; 16(1): 2353396, 2024.
Article in English | MEDLINE | ID: mdl-38778483

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that leads to respiratory failure, and eventually death. However, there is a lack of effective treatments for ALS. Here we report the results of fecal microbiota transplantation (FMT) in two patients with late-onset classic ALS with a Japan ALS severity classification of grade 5 who required tracheostomy and mechanical ventilation. In both patients, significant improvements in respiratory function were observed following two rounds of FMT, leading to weaning off mechanical ventilation. Their muscle strength improved, allowing for assisted standing and mobility. Other notable treatment responses included improved swallowing function and reduced muscle fasciculations. Metagenomic and metabolomic analysis revealed an increase in beneficial Bacteroides species (Bacteroides stercoris, Bacteroides uniformis, Bacteroides vulgatus), and Faecalibacterium prausnitzii after FMT, as well as elevated levels of metabolites involved in arginine biosynthesis and decreased levels of metabolites involved in branched-chain amino acid biosynthesis. These findings offer a potential rescue therapy for ALS with respiratory failure and provide new insights into ALS in general.


Subject(s)
Amyotrophic Lateral Sclerosis , Fecal Microbiota Transplantation , Respiratory Insufficiency , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/microbiology , Humans , Respiratory Insufficiency/therapy , Respiratory Insufficiency/microbiology , Male , Middle Aged , Aged , Female , Bacteroides , Gastrointestinal Microbiome , Faecalibacterium prausnitzii , Treatment Outcome , Respiration, Artificial , Feces/microbiology
7.
World J Gastroenterol ; 30(19): 2603-2611, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38817661

ABSTRACT

BACKGROUND: The gut microbiota is strongly associated with radiation-induced gut damage. This study aimed to assess the effectiveness and safety of intestinal microecological transplantation for treating patients with chronic radiation enteritis. CASE SUMMARY: A 64-year-old female with cervical cancer developed abdominal pain, diarrhea, and blood in the stool 1 year after radiotherapy. An electronic colonoscopy was performed to diagnose chronic radiation enteritis. Two courses of intestinal microecological transplantation and full-length 16S rRNA microbiological analysis were performed. The patient experienced short- and long-term relief from symptoms without adverse effects. Whole 16S rRNA sequencing revealed significant differences in the intestinal flora's composition between patient and healthy donors. Pathogenic bacteria, such as Escherichia fergusonii and Romboutsia timonensis, were more in the patient. Beneficial bacteria such as Faecalibacterium prausnitzii, Fusicatenibacter saccharivorans, Ruminococcus bromii, and Bifidobacterium longum were more in the healthy donors. Intestinal microbiota transplantation resulted in a significant change in the patient's intestinal flora composition. The composition converged with the donor's flora, with an increase in core beneficial intestinal bacteria, such as Eubacterium rectale, and a decrease in pathogenic bacteria. Changes in the intestinal flora corresponded with the patients' alleviating clinical symptoms. CONCLUSION: Intestinal microecological transplantation is an effective treatment for relieving the clinical symptoms of chronic radiation enteritis by altering the composition of the intestinal flora. This study provides a new approach for treating patients with chronic radiation enteritis.


Subject(s)
Enteritis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Radiation Injuries , Uterine Cervical Neoplasms , Humans , Female , Middle Aged , Enteritis/microbiology , Enteritis/diagnosis , Enteritis/etiology , Enteritis/therapy , Radiation Injuries/diagnosis , Radiation Injuries/microbiology , Radiation Injuries/etiology , Radiation Injuries/surgery , Gastrointestinal Microbiome/radiation effects , Fecal Microbiota Transplantation/methods , Uterine Cervical Neoplasms/radiotherapy , RNA, Ribosomal, 16S/genetics , Treatment Outcome , Chronic Disease , Colonoscopy , Intestines/microbiology , Intestines/radiation effects , Feces/microbiology , Radiotherapy/adverse effects
8.
NPJ Biofilms Microbiomes ; 10(1): 38, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575604

ABSTRACT

Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.


Subject(s)
Cyclic GMP/analogs & derivatives , Lipopolysaccharides , Mytilus , Animals , Larva/microbiology , Larva/physiology , Metamorphosis, Biological/genetics , Mytilus/genetics , Mytilus/microbiology , Bacteria
9.
Microbiol Spectr ; 12(4): e0143723, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38421192

ABSTRACT

The present study aimed to characterize the gut microbiota and serum metabolome changes associated with sleep deprivation (SD) as well as to explore the potential benefits of multi-probiotic supplementation in alleviating SD-related mental health disorders. Rats were subjected to 7 days of SD, followed by 14 days of multi-probiotics or saline administration. Open-field tests were conducted at baseline, end of SD (day 7), and after 14 days of saline or multi-probiotic gavage (day 21). Metagenomic sequencing was conducted on fecal samples, and serum metabolites were measured by untargeted liquid chromatography tandem-mass spectrometry. At day 7, anxiety-like behaviors, including significant decreases in total movement distance (P = 0.0002) and staying time in the central zone (P = 0.021), were observed. In addition, increased levels of lipopolysaccharide (LPS; P = 0.028) and decreased levels of uridine (P = 0.018) and tryptophan (P = 0.01) were detected in rats after 7 days of SD. After SD, the richness of the gut bacterial community increased, and the levels of Akkermansia muciniphila, Muribaculum intestinale, and Bacteroides caecimuris decreased. The changes in the host metabolism and gut microbiota composition were strongly associated with the anxiety-like behaviors caused by SD. In addition, multi-probiotic supplementation for 14 days modestly improved the anxiety-like behaviors in SD rats but significantly reduced the serum level of LPS (P = 0.045). In conclusion, SD induces changes in the gut microbiota and serum metabolites, which may contribute to the development of chronic inflammatory responses and affect the gut-brain axis, causing anxiety-like behaviors. Probiotic supplementation significantly reduces serum LPS, which may alleviate the influence of chronic inflammation. IMPORTANCE: The disturbance in the gut microbiome and serum metabolome induced by SD may be involved in anxiety-like behaviors. Probiotic supplementation decreases serum levels of LPS, but this reduction may be insufficient for alleviating SD-induced anxiety-like behaviors.


Subject(s)
Gastrointestinal Microbiome , Rats , Animals , Gastrointestinal Microbiome/physiology , Sleep Deprivation/complications , Lipopolysaccharides , Anxiety/metabolism , Inflammation/metabolism
10.
Chin Herb Med ; 16(1): 3-12, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38375050

ABSTRACT

To promote the development of extracellular vesicles of herbal medicine especially the establishment of standardization, led by the National Expert Committee on Research and Application of Chinese Herbal Vesicles, research experts in the field of herbal medicine and extracellular vesicles were invited nationwide with the support of the Expert Committee on Research and Application of Chinese Herbal Vesicles, Professional Committee on Extracellular Vesicle Research and Application, Chinese Society of Research Hospitals and the Guangdong Engineering Research Center of Chinese Herbal Vesicles. Based on the collation of relevant literature, we have adopted the Delphi method, the consensus meeting method combined with the nominal group method to form a discussion draft of "Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023)". The first draft was discussed in online and offline meetings on October 12, 14, November 2, 2022 and April and May 2023 on the current status of research, nomenclature, isolation methods, quality standards and research applications of extracellular vesicles of Chinese herbal medicines, and 13 consensus opinions were finally formed. At the Third Academic Conference on Research and Application of Chinese Herbal Vesicles, held on May 26, 2023, Kewei Zhao, convenor of the consensus, presented and read the consensus to the experts of the Expert Committee on Research and Application of Chinese Herbal Vesicles. The consensus highlights the characteristics and advantages of Chinese medicine, inherits the essence, and keeps the righteousness and innovation, aiming to provide a reference for colleagues engaged in research and application of Chinese herbal vesicles at home and abroad, decode the mystery behind Chinese herbal vesicles together, establish a safe, effective and controllable accurate Chinese herbal vesicle prevention and treatment system, and build a bridge for Chinese medicine to the world.

11.
J Control Release ; 367: 425-440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295998

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.


Subject(s)
Exosomes , MicroRNAs , Triple Negative Breast Neoplasms , Humans , Mice , Animals , MicroRNAs/therapeutic use , Brucea javanica , Phosphatidylinositol 3-Kinases/metabolism , Exosomes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Mammals/metabolism , Tumor Microenvironment
12.
Arch Gynecol Obstet ; 309(4): 1183-1190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38057588

ABSTRACT

BACKGROUND: The influence of maternal diet on offspring's health is an area of study that is linked to epigenetics. Maternal diet contributes to determining the health status of offspring and maternally linked mechanisms and is a global health challenge that requires attention. The impact of gut microbiota on host metabolism and offspring health is still not established. OBJECTIVE: In this review, we intend to discuss the evidence on the impact of maternal diet and the health of offspring gut microbiota. The paper focuses on the gut microbiome of animal models. It captures the maternal diet and its influence on the offspring's gut microbiota, behavior that is supported by cell experimental results. Both inflammation and immune status of offspring induced by maternal diet are discussed. Finally, this review used predicted biological pathways involved in maternal diet and offspring health, and the influence of maternal diet on gut microbiota and offspring behavior. Obesity, diabetes, asthma and allergies, and neurodegenerative disorders and prospects for maternal diet, and microbiota and offspring health were discussed. CONCLUSION: The review was able to gather that a high-fat diet during pregnancy created a long-lasting metabolic signature on the infant's innate immune system, altering inflammation in the offspring microbiota, which predisposed offspring to obesity and metabolic diseases in adulthood.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Pregnancy , Female , Humans , Obesity , Diet, High-Fat/adverse effects , Inflammation
13.
Cancer Cell ; 42(1): 135-156.e17, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38101410

ABSTRACT

Comprehensive molecular analyses of metastatic hepatocellular carcinoma (HCC) are lacking. Here, we generate multi-omic profiling of 257 primary and 176 metastatic regions from 182 HCC patients. Primary tumors rich in hypoxia signatures facilitated polyclonal dissemination. Genomic divergence between primary and metastatic HCC is high, and early dissemination is prevalent. The remarkable neoantigen intratumor heterogeneity observed in metastases is associated with decreased T cell reactivity, resulting from disruptions to neoantigen presentation. We identify somatic copy number alterations as highly selected events driving metastasis. Subclones without Wnt mutations show a stronger selective advantage for metastasis than those with Wnt mutations and are characterized by a microenvironment rich in activated fibroblasts favoring a pro-metastatic phenotype. Finally, metastases without Wnt mutations exhibit higher enrichment of immunosuppressive B cells that mediate terminal exhaustion of CD8+ T cells via HLA-E:CD94-NKG2A checkpoint axis. Collectively, our results provide a multi-dimensional dissection of the complex evolutionary process of metastasis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , CD8-Positive T-Lymphocytes/pathology , Multiomics , Mutation , Tumor Microenvironment/genetics
14.
J Biol Eng ; 17(1): 75, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049878

ABSTRACT

Nerve growth factor (NGF) is a vital cytokine that plays a crucial role in the development and regeneration of the nervous system. It has been extensively studied for its potential therapeutic applications in various neural diseases. However, as a protein drug, limited natural source seriously hinders its translation and clinical applications. Conventional extraction of NGF from mouse submandibular glands has a very high cost and potentially induces immunogenicity; total synthesis and semi-synthesis methods are alternatives, but have difficulty in obtaining correct protein structure; gene engineering of plant cells is thought to be non-immunogenic, bioactive and economical. Meanwhile, large molecular weight, high polarity, and negative electrical charge make it difficult for NGF to cross the blood brain barrier to reach therapeutic targets. Current delivery strategies mainly depend on the adenovirus and cell biodelivery, but the safety and efficacy remain to be improved. New materials are widely investigated for the controllable, safe and precise delivery of NGF. This review illustrates physiological and therapeutic effects of NGF for various diseases. Moreover, new progress in production and delivery technologies for NGF are summarized. Bottlenecks encountered in the development of NGF as therapeutics are also discussed with the countermeasures proposed.

15.
Front Immunol ; 14: 1255668, 2023.
Article in English | MEDLINE | ID: mdl-38155963

ABSTRACT

Plant-derived nucleic acids, especially small RNAs have been proved by increasing evidence in the pharmacological activities and disease treatment values in macrophage meditated anti-tumor performance, immune regulating functions and antiviral activities. But the uptake, application and delivery strategies of RNAs as biodrugs are different from the small molecules and recombinant protein drugs. This article summarizes the reported evidence for cross-kingdom regulation by plant derived functional mRNAs and miRNAs. Based on that, their involvement and potentials in macrophage-mediated anti-tumor/inflammatory therapies are mainly discussed, as well as the load prospect of plant RNAs in viruses and natural exosome vehicles, and their delivery to mammalian cells through macrophage were also summarized. This review is to provide evidence and views for the plant derived RNAs as next generation of drugs with application potential in nucleic acid-based bio-therapy.


Subject(s)
Exosomes , MicroRNAs , Neoplasms , Nucleic Acids , Plants , Animals , Exosomes/metabolism , MicroRNAs/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Nucleic Acids/therapeutic use , Plants/genetics
16.
Cell Biosci ; 13(1): 174, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723591

ABSTRACT

OBJECTIVES: Although accumulation of misfolded tau species has been shown to predict cognitive decline in patients with Alzheimer's disease (AD) and other tauopathies but with the remarkable diversity of clinical manifestations, neuropathology profiles, and time courses of disease progression remaining unexplained by current genetic data. We considered the diversity of misfolded tau conformers present in individual AD cases as an underlying driver of the phenotypic variations of AD and progressive loss of synapses. METHODS: To model the mechanism of tau propagation and synaptic toxicity of distinct tau conformers, we inoculated wild-type primary mouse neurons with structurally characterized Sarkosyl-insoluble tau isolates from the frontal cortex of six AD cases and monitored the impact for fourteen days. We analyzed the accumulation rate, tau isoform ratio, and conformational characteristics of de novo-induced tau aggregates with conformationally sensitive immunoassays, and the dynamics of synapse formation, maintenance, and their loss using a panel of pre-and post-synaptic markers. RESULTS: At the same concentrations of tau, the different AD tau isolates induced accumulation of misfolded predominantly 4-repeat tau aggregates at different rates in mature neurons, and demonstrated distinct conformational characteristics corresponding to the original AD brain tau. The time-course of the formation of misfolded tau aggregates and colocalization correlated with significant loss of synapses in tau-inoculated cell cultures and the reduction of synaptic connections implicated the disruption of postsynaptic compartment as an early event. CONCLUSIONS: The data obtained with mature neurons expressing physiological levels and adult isoforms of tau protein demonstrate markedly different time courses of endogenous tau misfolding and differential patterns of post-synaptic alterations. These and previous biophysical data argue for an ensemble of various misfolded tau aggregates in individual AD brains and template propagation of their homologous conformations in neurons with different rates and primarily postsynaptic interactors. Modeling tau aggregation in mature differentiated neurons provides a platform for investigating divergent molecular mechanisms of tau strain propagation and for identifying common structural features of misfolded tau and critical interactors for new therapeutic targets and approaches in AD.

17.
World J Gastroenterol ; 29(35): 5125-5137, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37744294

ABSTRACT

BACKGROUND: Autoimmune pancreatitis (AIP) has been linked with elevated immunoglobulin (Ig) G4 levels. The characteristics and outcomes of AIP based on serum markers have not been fully evaluated. AIM: To compare clinical features, treatment efficacy, and outcome of AIP based on serum IgG4 levels and analyze predictors of relapse. METHODS: A total of 213 patients with AIP were consecutively reviewed in our hospital from 2006 to 2021. According to the serum IgG4 level, all patients were divided into two groups, the abnormal group (n = 148) with a high level of IgG4 [> 2 × upper limit of normal (ULN)] and the normal group (n = 65). The t-test or Mann-Whitney U test was used to compare continuous variables. Categorical parameters were compared by the χ2 test or Fisher's exact test. Kaplan-Meier curves and log-rank tests were established to assess the cumulative relapse rates. Univariate and multivariate analyses were used to investigate potential risk factors of AIP relapse. RESULTS: Compared with the normal group, the abnormal group had a higher average male age (60.3 ± 10.4 vs 56.5 ± 12.9 years, P = 0.047); higher level of serum total protein (72.5 ± 7.9 g/L vs 67.2 ± 7.5 g/L, P < 0.001), IgG4 (1420.5 ± 1110.9 mg/dL vs 252.7 ± 106.6 mg/dL, P < 0.001), and IgE (635.6 ± 958.1 IU/mL vs 231.7 ± 352.5 IU/mL, P = 0.002); and a lower level of serum complement C3 (100.6 ± 36.2 mg/dL vs 119.0 ± 45.7 mg/dL, P = 0.050). In addition, a lower number of cases with abnormal pancreatic duct and pancreatic atrophy (23.6% vs 37.9%, P = 0.045; 1.6% vs 8.6%, P = 0.020, respectively) and a higher rate of relapse (17.6% vs 6.2%, P = 0.030) were seen in the abnormal group. Multivariate analyses revealed that serum IgG4 [(> 2 × ULN), hazard ratio (HR): 3.583; 95% confidence interval (CI): 1.218-10.545; P = 0.020] and IgA (> 1 × ULN; HR: 5.908; 95%CI: 1.199-29.120; P = 0.029) and age > 55 years (HR: 2.383; 95%CI: 1.056-5.378; P = 0.036) were independent risk factors of relapse. CONCLUSION: AIP patients with high IgG4 levels have clinical features including a more active immune system and higher relapse rate. Several factors, such as IgG4 and IgA, are associated with relapse.


Subject(s)
Autoimmune Pancreatitis , Humans , Male , Adult , Middle Aged , Aged , Retrospective Studies , Hospitals , Immunoglobulin G , Immunoglobulin A
18.
World J Gastrointest Oncol ; 15(8): 1317-1331, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37663937

ABSTRACT

Colitis-associated colorectal cancer (CAC) is defined as a specific cluster of colorectal cancers that develop as a result of prolonged colitis in patients with inflammatory bowel disease (IBD). Patients with IBD, including ulcerative colitis and Crohn's disease, are known to have an increased risk of developing CAC. Although the incidence of CAC has significantly decreased over the past few decades, individuals with CAC have increased mortality compared to individuals with sporadic colorectal cancer, and the incidence of CAC increases with duration. Chronic inflammation is generally recognized as a major contributor to the pathogenesis of CAC. CAC has been shown to progress from colitis to dysplasia and finally to carcinoma. Accumulating evidence suggests that multiple immune-mediated pathways, DNA damage pathways, and pathogens are involved in the pathogenesis of CAC. Over the past decade, there has been an increasing effort to develop clinical approaches that could help improve outcomes for CAC patients. Colonoscopic surveillance plays an important role in reducing the risk of advanced and interval cancers. It is generally recommended that CAC patients undergo endoscopic removal or colectomy. This review summarizes the current understanding of CAC, particularly its epidemiology, mechanisms, and management. It focuses on the mechanisms that contribute to the development of CAC, covering advances in genomics, immunology, and the microbiome; presents evidence for management strategies, including endoscopy and colectomy; and discusses new strategies to interfere with the process and development of CAC. These scientific findings will pave the way for the management of CAC in the near future.

19.
J Anesth ; 37(5): 775-786, 2023 10.
Article in English | MEDLINE | ID: mdl-37528250

ABSTRACT

PURPOSES: To optimize the efficacy of analgesia and post-operative recovery for patients undergoing laparoscopic colorectal surgery by integrating a composite psycho-somatic analgesia algorithm involving peri-operative rehabilitation exercise and pain neuroscience education into multi-modal analgesia. METHODS: A prospective randomized controlled trial was conducted to compare conventional peri-operative analgesia (group CA) and the addition of rehabilitation exercise and pain neuroscience education into it (group REPNE) for patients undergoing laparoscopic colorectal surgery. Acute and chronic post-operative pain, characteristics of pain (pain catastrophizing, sensitization, and trends of neuropathic transformation), and quality of post-operative recovery calibrated with EuroQol Five Dimensions Questionnaire (EQ-5D-5L) were investigated and compared between two groups. RESULTS: A total of 175 patients consented to participate in this study. Compared with those receiving conventional analgesia (group CA, N = 89), patients in group REPNE (N = 86) reported reduced intensity of pain 24 h after surgery, less risk of pain catastrophizing and sensitization, and better quality of life during hospitalization recovery till 1 month after surgery (p < 0.05). No statistical difference was found for neuropathic transformation of post-operative pain or for the incidence of chronic post-operative pain (p > 0.05). CONCLUSIONS: The addition of peri-operative rehabilitation exercise and pain neuroscience education into multi-modal analgesia provided better analgesic effect compared with routine practice for patients receiving laparoscopic colorectal surgery and also facilitated better post-operative recovery. This composite psycho-somatic algorithm for peri-operative analgesia merits further application in clinical practice.


Subject(s)
Colorectal Surgery , Exercise Therapy , Laparoscopy , Pain, Postoperative , Humans , Colorectal Surgery/adverse effects , Colorectal Surgery/methods , Laparoscopy/adverse effects , Pain, Postoperative/etiology , Pain, Postoperative/therapy , Prospective Studies , Quality of Life
20.
Mater Today Bio ; 22: 100736, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37521524

ABSTRACT

Skin wound is always accompanied with nerve damage, leading to significant sensory function loss. Currently, the functional matrix material based stem cell transplantation and in situ nerve regeneration are thought to be effective strategies, of which, how to recruit stem cells, retard senescence, and promote neural differentiation has been obstacle to be overcome. However, the therapeutic efficiency of the reported systems has yet to be improved and side effect reduced. Herein, a conduit matrix with three-dimensional ordered porous structures, regular porosity, appropriate mechanical strength, and conductive features was prepared by orienting the freezing technique, which was further filled with neural-directing exosomes to form a neural-stimulating matrix for providing hybrid physical-biochemical stimulations. This neural-stimulating matrix was then compacted with methacrylate gelatin (GelMA) hydrogel thin coat that loaded with chemokines and anti-senescence drugs, forming a multi-functional artificial niche (termed as GCr-CSL) that promotes MSCs recruitment, anti-senescence, and neural differentiation. GCr-CSL was shown to rapidly enhances in situ nerve regeneration in skin wound therapy, and with great potential in promoting sensory function recovery. This study demonstrates proof-of-concept in building a biomimetic niche to organize endogenous MSCs recruitment, differentiation, and functionalization for fast neurological and sensory recovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...