Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 740
Filter
1.
Heliyon ; 10(12): e32563, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975137

ABSTRACT

Flavonoids are found in the roots, stems, leaves, and fruits of many plant taxa. They are related to plant growth and development, pigment formation, and protection against environmental stress. Flavonoids function as antioxidants and exert anti-inflammatory effects in the cardiovascular system by modulating classical inflammatory response pathways, such as the TLR4-NF-ĸB, PI3K-AKT, and Nrf2/HO-1 signalling pathways. There is increasing evidence for the therapeutic effects of flavonoids on hypertension, atherosclerosis, and other diseases. The potential clinical value of flavonoids for diseases of the cardiovascular system has been widely explored. For example, studies have evaluated the roles of flavonoids in the regulation of blood pressure via endothelium-dependent and non-endothelium-dependent pathways and in the regulation of myocardial systolic and diastolic functions by influencing calcium homeostasis and smooth muscle-related protein expression. Flavonoids also have hypoglycaemic, hypolipidemic, anti-platelet, autophagy, and antibacterial effects. In this paper, the role and mechanism of flavonoids in cardiovascular diseases were reviewed in order to provide reference for the clinical application of flavonoids in the future.

2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 349-358, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970508

ABSTRACT

OBJECTIVES: Obesity related glomerulopathy (ORG) is induced by obesity, but the pathogenesis remains unclear. This study aims to investigate the expression of early growth response protein 3 (EGR3) in the renal cortex tissues of ORG patients and high-fat diet-induced obese mice, and to further explore the molecular mechanism of EGR3 in inhibiting palmitic acid (PA) induced human podocyte inflammatory damage. METHODS: Renal cortex tissues were collected from ORG patients (n=6) who have been excluded from kidney damage caused by other diseases and confirmed by histopathology, and from obese mice induced by high-fat diet (n=10). Human and mouse podocytes were intervened with 150 µmol/L PA for 48 hours. EGR3 was overexpressed or silenced in human podocytes. Enzyme linked immunosorbent assay (ELISA) was used to detcet the levels of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). Real-time RT-PCR was used to detect the mRNA expressions of EGR3, podocytes molecular markers nephrosis 1 (NPHS1), nephrosis 2 (NPHS2), podocalyxin (PODXL), and podoplanin (PDPN). RNA-seq was performed to detect differentially expressed genes (DEGs) after human podocytes overexpressing EGR3 and treated with 150 µmol/L PA compared with the control group. Co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS) was used to detect potential interacting proteins of EGR3 and the intersected with the RNA-seq results. Co-IP confirmed the interaction between EGR3 and protein arginine methyltransferases 1 (PRMT1), after silencing EGR3 and PRMT1 inhibitor intervention, the secretion of IL-6 and IL-1ß in PA-induced podocytes was detected. Western blotting was used to detect the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) after overexpression or silencing of EGR3. RESULTS: EGR3 was significantly upregulated in renal cortex tissues of ORG patients and high-fat diet-induced obese mice (both P<0.01). In addition, after treating with 150 µmol/L PA for 48 hours, the expression of EGR3 in human and mouse podocytes was significantly upregulated (both P<0.05). Overexpression or silencing of EGR3 in human podocytes inhibited or promoted the secretion of IL-6 and IL-1ß in the cell culture supernatant after PA intervention, respectively, and upregulated or downregulated the expression of NPHS1, PODXL, NPHS2,and PDPN (all P<0.05). RNA-seq showed a total of 988 DEGs, and Co-IP+LC-MS identified a total of 238 proteins that may interact with EGR3. Co-IP confirmed that PRMT1 was an interacting protein with EGR3. Furthermore, PRMT1 inhibitors could partially reduce PA-induced IL-6 and IL-1ß secretion after EGR3 silencing in human podocytes (both P<0.05). Overexpression or silencing of EGR3 negatively regulated the expression of PRMT1 and p-STAT3. CONCLUSIONS: EGR3 may reduce ORG podocyte inflammatory damage by inhibiting the PRMT1/p-STAT3 pathway.


Subject(s)
Early Growth Response Protein 3 , Obesity , Podocytes , Protein-Arginine N-Methyltransferases , Repressor Proteins , STAT3 Transcription Factor , Podocytes/metabolism , Podocytes/pathology , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Animals , Humans , Mice , STAT3 Transcription Factor/metabolism , Obesity/complications , Obesity/metabolism , Early Growth Response Protein 3/metabolism , Early Growth Response Protein 3/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology , Palmitic Acid/pharmacology , Diet, High-Fat/adverse effects , Inflammation/metabolism , Mice, Obese , Male , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Interleukin-6/metabolism , Interleukin-6/genetics , Kidney Cortex/metabolism , Kidney Cortex/pathology
3.
J Colloid Interface Sci ; 672: 415-422, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850866

ABSTRACT

To achieve rapid preparation of hydrogels without using conventional chemical initiators, a stable suspension of eutectic gallium indium (EGaIn) liquid metal nanoparticles is explored by probe-sonicating the metal in an aqueous solution. Liquid metal suspension was sonicated to serve as a photo-initiator for acrylamide polymerization and produce hydrogels. The initiation effect comes from the fact that liquid metal suspension after sonication can produce a large number of free radicals when exposed to ultraviolet (UV) radiation, leading to initiation. The changes of liquid metal nanodroplets under UV light irradiation have been systematically investigated. Further, the liquid metal colloidal solutions were used to prepare hydrogels with the same transparency and adjustable mechanical properties as the samples initiated by commercial photo-initiators. This work shows the great application potential of liquid metal in the preparation of hydrogels and provides a new technical idea for the design of multifunctional hydrogels.

4.
Lupus Sci Med ; 11(1)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906550

ABSTRACT

OBJECTIVE: Systemic lupus erythematosus (SLE) is a type of autoimmune disease that involves multiple organs involved as well as cytokine dysregulation. The treatment of SLE is still challenging due to the side effects of the different drugs used. Receptor-interacting protein kinase 1 (RIPK1) is a kinase involved in T cell homeostasis and autoinflammation. Although clinical trials have shown that RIPK1 inhibition exhibits significant efficacy in different autoimmune diseases, its role in SLE remains unclear. METHODS: MRL/lpr lupus-prone mice received RIPK1 inhibitor ZJU37 or vehicle intraperitoneally for 10 weeks. A BM12-induced chronic graft-versus-host-disease (cGVHD) lupus-like model was introduced in RIPK1 D138N mice or C57BL/6 mice. Nephritis, serum autoantibody levels, dysregulation of adaptive immune response and cytokines were compared in treated and untreated mice. RESULTS: ZJU37 alleviated the clinical features of the MRL/lpr mice including nephritis and anti-dsDNA antibody production. In addition, ZJU37 treatment reduced the proportion of double-negative T cells in the spleen and the cytokines of TNFα, IFN-γ, IL-6, IL-17 and IL-1ß in the serum. Moreover, RIPK1 D138N mice were able to prevent the cGVHD lupus-like model from SLE attack, manifesting as anti-dsDNA antibody production, the proliferation of germinal centre B cells, plasma cells, and T follicular helper cells as well as IgG and C3 deposits in kidneys. CONCLUSION: RIPK1 inhibition has a protective effect in the mouse model of SLE and can potentially become a new therapeutic target for SLE in humans.


Subject(s)
Cytokines , Disease Models, Animal , Graft vs Host Disease , Lupus Erythematosus, Systemic , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Mice , Graft vs Host Disease/drug therapy , Graft vs Host Disease/immunology , Cytokines/metabolism , Female , Antibodies, Antinuclear/blood , Lupus Nephritis/drug therapy , Lupus Nephritis/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Spleen/immunology , Spleen/drug effects
5.
Fish Shellfish Immunol ; 150: 109605, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704111

ABSTRACT

Crucian carp (Carassius carassius) is an important aquatic economic animal, and the immune barrier function of its intestine has been a focus of research into oral vaccines and drugs. However, the histological structures of the intestinal barrier and its adjacent areas have not been clearly established, and little subcellular evidence is available to elucidate the spatial distribution of intracellular biological processes. In this study, the spatial distribution of autophagy and endosome formation in the intestinal epithelial cells (IECs) of crucian carp were analyzed. These two biological activities are closely related to intestinal homeostasis, immunity, and cell communication. Periodic acid-Schiff (PAS) and Masson's trichrome staining were employed to elucidate the distinctive histological framework of the Crucian carp's myoid cell network, which resides within the subepithelial layer and is characterized by gap junctions. Transmission electron microscopy (TEM), immunohistochemistry (IHC), and immunofluorescence (IF) were used to detect the structural and functional aspects of the IEC in different intestinal segments. TEM and immunohistochemical analyses captured the biogenesis and maturation of early and late endosomes as well as multivesicular bodies (MVBs), as well as the initiation and progression of autophagy, including macroautophagy and mitophagy. The endosome and MVBs-specific marker CD63 and autophagy-related protein LC3 were highly expressed in IECs and were correlated with autophagy and endosome biosynthesis in the apical and basal regions of individual cells, and differed between different intestinal segments. In summary, this study elucidated the ubiquity and morphological characteristics of autophagy and endosome formation across different intestinal segments of crucian carp. A unique myoid cell network beneath the intestinal epithelium in crucian carp was also identified, expanding the histological understanding of this animal's intestinal tract.


Subject(s)
Autophagy , Carps , Endosomes , Animals , Carps/immunology , Endosomes/immunology , Endosomes/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/cytology , Intestines/immunology , Intestines/cytology , Epithelial Cells/immunology
7.
Ann Med Surg (Lond) ; 86(5): 2518-2523, 2024 May.
Article in English | MEDLINE | ID: mdl-38694352

ABSTRACT

Background: Esophageal cancer (EC) is a major global health burden, with a particularly high incidence in East Asia. The authors aimed to investigate the effect of metastasis in cervical paraesophageal lymph nodes (station 101) and supraclavicular lymph nodes (station 104) on the survival of patients who underwent esophagectomy for esophageal squamous cell carcinoma (ESCC). Materials and Methods: Data were obtained from the database of the authors' hospital. The authors retrospectively analyzed the patients with EC who underwent esophagectomy from January 2010 to December 2017. These patients were allocated into two groups based on the presence of lymph node metastasis (LNM) in the cervical paraesophageal or supraclavicular regions. Clinical outcomes and survival data were compared using the TNM staging system of the 8th edition of the American Joint Committee on Cancer (AJCC). Results: After a median follow-up of 62.1 months, 122 patients with LNM in the supraclavicular region were included in the study. Among these patients, 53 showed cervical paraesophageal LNM and an overall survival (OS) of 19.9 months [95% confidence interval (CI): 16.3-23.5]. In contrast, 69 patients showed supraclavicular LNM with an OS of 34.9 months (95% CI 25.7-44.1). The OS rates at 1, 3, and 5 years were 77%, 29%, and 21%, respectively, for patients with cervical paraesophageal LNM. Moreover, patients with supraclavicular LNM demonstrated OS rates of 88%, 48%, and 34%, respectively [Hazard ratio (HR): 0.634, 95% CI: 0.402-1.000, P=0.042]. Conclusions: Patients with ESCC with cervical paraesophageal LNM had significantly worse OS than those with supraclavicular LNM. This study underscores the importance of accurately identifying and managing ESCC with cervical paraesophageal LNM, as it may require more tailored and aggressive treatment strategies to prolong patient survival.

8.
Sci Rep ; 14(1): 12234, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806556

ABSTRACT

Prolyl 4-hydroxylases (P4Hs) are a family of key modifying enzymes in collagen synthesis. P4Hs have been confirmed to be closely associated with tumor occurrence and development. However, the expression of P4Hs in head and neck cancer (HNSC) as well as its relationship with prognosis and tumor immunity infiltration has not yet been analyzed. We investigated the transcriptional expression, survival data, and immune infiltration of P4Hs in patients with HNSC from multiple databases. P4H1-3 expression was significantly higher in HNSC tumor tissues than in normal tissues. Moreover, P4HA1 and P4HA2 were associated with tumor stage, patient prognosis, and immune cell infiltration. P4HA3 was related to patient prognosis and immune cell infiltration. Correlation experiments confirmed that P4HA1 may serve as a prognosis biomarker and plays a role in the progression of nasopharyngeal carcinoma. These findings suggest that P4HA1-3 may be a novel biomarker for the prognosis and treatment of HNSC, which is expected to support the development of new therapies for patients with head and neck tumors and improve patient outcomes.


Subject(s)
Biomarkers, Tumor , Head and Neck Neoplasms , Immunotherapy , Procollagen-Proline Dioxygenase , Humans , Biomarkers, Tumor/metabolism , Prognosis , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/diagnosis , Immunotherapy/methods , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/mortality
9.
J Gastrointest Surg ; 28(5): 611-620, 2024 May.
Article in English | MEDLINE | ID: mdl-38704198

ABSTRACT

PURPOSE: With the rising life expectancy and an aging population, it has become increasingly important to investigate treatments suitable for older adult patients with esophageal cancer. This study investigated whether older adult patients who underwent esophagectomy had better clinical outcomes than those who were nonsurgically treated. METHODS: We retrospectively analyzed patients with esophageal squamous cell carcinoma (ESCC) who were 70 years or older and underwent esophagectomy, radiotherapy (RT), and/or chemoradiotherapy (CRT) between January 2018 and December 2019. Patients were divided into 2 groups: the surgery group (S group) and the nonsurgery group (NS group). We then compared the clinical outcomes of the 2 groups. RESULTS: After a median follow-up duration of 36.6 months, the S group showed better overall survival (OS). The 3-year OS was 59% in the S group and 27% in the NS group (hazard ratio [HR], 0.397; 95% CI, 0.278-0.549; P < .0001). In the S group, the median progression-free survival was 38.3 months (95% CI, 30.6-46.1) compared with 12.3 months in the NS group (HR, 0.511; 95% CI, 0.376-0.695; P < .0001). In addition, the number of adverse events in the NS group was higher than that in the S group (P < .001). CONCLUSION: Overall, patients with ESCC at the age of ≥70 years who underwent esophagectomy had significantly better clinical outcomes than those who underwent nonsurgical treatment with RT and/or CRT.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophagectomy , Propensity Score , Humans , Male , Aged , Female , Esophageal Neoplasms/therapy , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Retrospective Studies , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/surgery , Aged, 80 and over , Chemoradiotherapy , Survival Rate , Treatment Outcome , Age Factors , Progression-Free Survival
12.
Abdom Radiol (NY) ; 49(6): 1975-1986, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38619611

ABSTRACT

OBJECTIVE: To investigate multiphase computed tomography (CT) radiomics-based combined with clinical factors to predict overall survival (OS) in patients with bladder urothelial carcinoma (BLCA) who underwent transurethral resection of bladder tumor (TURBT). METHODS: Data were retrospectively collected from 114 patients with primary BLCA from February 2016 to February 2018. The regions of interest (ROIs) of the plain, arterial, and venous phase images were manually segmented. The Cox regression algorithm was used to establish 3 basic models for the plain phase (PP), arterial phase (AP), and venous phase (VP) and 2 combination models (AP + VP and PP + AP + VP). The highest-performing radiomics model was selected to calculate the radiomics score (Rad-score), and independent risk factors affecting patients' OS were analyzed using Cox regression. The Rad-score and clinical risk factors were combined to construct a joint model and draw a visualized nomogram. RESULTS: The combined model of PP + AP + VP showed the best performance with the Akaike Information Criterion (AIC) and Consistency Index (C-index) in the test group of 130.48 and 0.779, respectively. A combined model constructed with two independent risk factors (age and Ki-67 expression status) in combination with the Rad-score outperformed the radiomics model alone; AIC and C-index in the test group were 115.74 and 0.840, respectively. The calibration curves showed good agreement between the predicted probabilities of the joint model and the actual (p < 0.05). The decision curve showed that the joint model had good clinical application value within a large range of threshold probabilities. CONCLUSION: This new model can be used to predict the OS of patients with BLCA who underwent TURBT.


Subject(s)
Tomography, X-Ray Computed , Urinary Bladder Neoplasms , Humans , Male , Female , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/surgery , Retrospective Studies , Middle Aged , Aged , Prognosis , Tomography, X-Ray Computed/methods , Predictive Value of Tests , Aged, 80 and over , Nomograms , Carcinoma, Transitional Cell/diagnostic imaging , Carcinoma, Transitional Cell/pathology , Adult , Contrast Media , Cystectomy/methods , Risk Factors , Radiomics
13.
Microbiol Spectr ; 12(6): e0416823, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38666774

ABSTRACT

COVID-19 caused by Omicron BA.1 has resulted in a global humanitarian crisis. In this COVID-19 pandemic era, hypertension has been receiving increased attention. Omicron BA.1 infection combined with hypertension created a serious public health problem and complicated the treatment and prognosis of COVID-19. The aim of our study was to assess the implications of hypertension for the clinical manifestations of adult patients (APs) infected with Omicron BA.1. This single-center retrospective cohort study enrolled consecutive COVID-19 APs, who were admitted to Tianjin First Central Hospital from 01 August 2022 to 30 November 2022. All included APs were divided into two groups: hypertension and non-hypertension group. The APs' baseline demographic, laboratory, clinical, and radiological characteristics were collected and analyzed. Of 512 APs admitted with PCR proven COVID-19, 161 (31.45%) APs had comorbid hypertension. Hypertension APs have older age, higher body mass index, lower Ct-values of the viral target genes at admission, and longer hospital stay than non-hypertension APs. Furthermore, hypertension aggravates the clinical classification, impairs liver, kidney, and myocardium function, and abnormalizes the coagulation system in Omicron BA.1- infected APs. Moreover, hypertension elevates inflammation levels and lung lesion involvement while weakened virus-specific IgM level in APs with Omicron BA.1 infection. Hypertension APs tend to have worse clinical conditions at baseline than those non-hypertension APs. This study indicates that hypertension is a contributor to the poor clinical manifestations of Omicron BA.1-infected APs and supports that steps to control blood pressure should be a vital consideration for reducing the burden of Omicron BA.1 infection in hypertension individuals. IMPORTANCE: This study provided inclusive insight regarding the relationship between hypertension and Omicron BA.1 infection and supported that hypertension was an adverse factor for COVID-19 APs. In conclusion, this study showed that hypertension was considered to be associated with severe conditions, and a contributor to poor clinical manifestations. Proper medical management of hypertension patients is an imperative step in mitigating the severity of Omicron BA.1 variant infection.


Subject(s)
COVID-19 , Hypertension , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/virology , Hypertension/complications , Male , Female , Middle Aged , SARS-CoV-2/genetics , Retrospective Studies , Adult , Aged
14.
BMC Cancer ; 24(1): 474, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622609

ABSTRACT

BACKGROUND AND PURPOSE: In recent years, there has been extensive research on the role of exercise as an adjunctive therapy for cancer. However, the potential mechanisms underlying the anti-tumor therapy of exercise in lung cancer remain to be fully elucidated. As such, our study aims to confirm whether exercise-induced elevation of epinephrine can accelerate CD8+ T cell recruitment through modulation of chemokines and thus ultimately inhibit tumor progression. METHOD: C57BL/6 mice were subcutaneously inoculated with Lewis lung cancer cells (LLCs) to establish a subcutaneous tumor model. The tumor mice were randomly divided into different groups to performed a moderate-intensity exercise program on a treadmill for 5 consecutive days a week, 45 min a day. The blood samples and tumor tissues were collected after exercise for IHC, RT-qPCR, ELISA and Western blot. In addition, another group of mice received daily epinephrine treatment for two weeks (0.05 mg/mL, 200 µL i.p.) (EPI, n = 8) to replicate the effects of exercise on tumors in vivo. Lewis lung cancer cells were treated with different concentrations of epinephrine (0, 5, 10, 20 µM) to detect the effect of epinephrine on chemokine levels via ELISA and RT-qPCR. RESULTS: This study reveals that both pre- and post-cancer exercise effectively impede the tumor progression. Exercise led to an increase in EPI levels and the infiltration of CD8+ T cell into the lung tumor. Exercise-induced elevation of EPI is involved in the regulation of Ccl5 and Cxcl10 levels further leading to enhanced CD8+ T cell infiltration and ultimately inhibiting tumor progression. CONCLUSION: Exercise training enhance the anti-tumor immunity of lung cancer individuals. These findings will provide valuable insights for the future application of exercise therapy in clinical practice.


Subject(s)
Carcinoma, Lewis Lung , Lung Neoplasms , Animals , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes , Chemokines , Carcinoma, Lewis Lung/therapy , Carcinoma, Lewis Lung/pathology , Tumor Microenvironment , Cell Line, Tumor
15.
J Environ Sci (China) ; 143: 12-22, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644010

ABSTRACT

Selective catalytic NH3-to-N2 oxidation (NH3-SCO) is highly promising for abating NH3 emissions slipped from stationary flue gas after-treatment devices. Its practical application, however, is limited by the non-availability of low-cost catalysts with high activity and N2 selectivity. Here, using defect-rich nitrogen-doped carbon nanotubes (NCNT-AW) as the support, we developed a highly active and durable copper-based NH3-SCO catalyst with a high abundance of cuprous (Cu+) sites. The obtained Cu/NCNT-AW catalyst demonstrated outstanding activity with a T50 (i.e. the temperature to reach 50% NH3 conversion) of 174°C in the NH3-SCO reaction, which outperformed not only the Cu catalyst supported on N-free O-functionalized CNTs (OCNTs) or NCNT with less surface defects, but also those most active Cu catalysts in open literature. Reaction kinetics measurements and temperature-programmed surface reactions using NH3 as a probe molecule revealed that the NH3-SCO reaction on Cu/NCNT-AW follows an internal selective catalytic reaction (i-SCR) route involving nitric oxide (NO) as a key intermediate. According to mechanistic investigations by X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray absorption spectroscopy, the superior NH3-SCO performance of Cu/NCNT-AW originated from a synergy of surface defects and N-dopants. Specifically, surface defects promoted the anchoring of CuO nanoparticles on N-containing sites and, thereby, enabled efficient electron transfer from N to CuO, increasing significantly the fraction of SCR-active Cu+ sites in the catalyst. This study puts forward a new idea for manipulating and utilizing the interplay of defects and N-dopants on carbon surfaces to fabricate Cu+-rich Cu catalysts for efficient abatement of slip NH3 emissions via selective oxidation.


Subject(s)
Ammonia , Copper , Oxidation-Reduction , Copper/chemistry , Ammonia/chemistry , Catalysis , Nanotubes, Carbon/chemistry , Air Pollutants/chemistry , Temperature , Models, Chemical
16.
Food Res Int ; 184: 114262, 2024 May.
Article in English | MEDLINE | ID: mdl-38609241

ABSTRACT

There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.


Subject(s)
Acetic Acid , Antioxidants , Chlorogenic Acid , Gallic Acid , Polyphenols
18.
J Hazard Mater ; 471: 134383, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669930

ABSTRACT

This study carried out the atmospheric and precipitation observation in Beijing for nearly one year, and firstly simultaneously observed the pollution characteristics of PFASs and their main isomers, focusing on their gas-particle partitioning mechanism and dry and wet deposition characteristics. After deducting PFASs in the aqueous phase of particulate matter, the gas-particle partitioning coefficients (-7.04 to -5.49) were about 3-4 units smaller than before (-2.77 to -1.51), and all were smaller than 0, which indicated that each PFAS and isomer were more distributed in the gas phase. Dry deposition was dominant in the atmospheric deposition of each PFAS and isomer with relative contribution of 66 ± 17%, but the relative contribution of dry deposition was significantly different. It was found that the gas-particle partitioning coefficient can be influenced by key chemical structures such as carbon chain length, functional group type, and isomer structure. Furthermore, the gas-particle partitioning can influence the dry and wet deposition of PFASs. Specifically, PFASs with longer carbon chains, carboxylic acid functional group (compared to sulfonic acid functional group) or PFOA branched chain structures had larger gas-particle partitioning coefficients and can be more distributed in the hydrophobic phase of particulate matter, and their relative contributions of dry deposition were smaller.

20.
Sci Total Environ ; 926: 171989, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38547971

ABSTRACT

To understand the characteristics of atmospheric pollution above the urban canopy in warm seasons, the characteristics of sub-micron aerosol (PM1) was studied based on high-altitude observations at the Beijing 325 m meteorological tower. The PM1 at 260 m was 34, 29 and 21 µg m-3 in May 2015, June 2015, and June 2017, respectively, indicating a reduction in PM1 pollution above the urban canopy. Meanwhile, an overall decrease was also observed in the concentrations of all PM1 chemical species (excluding Chl and BC) and organic aerosol (OA) factors. Previous instances of heavy haze in Beijing often coincided with high humidity and stagnant weather conditions. However, the heightened pollution episodes in June 2017 were accompanied by high wind speeds and low relative humidity. Compared to May 2015, the contribution of secondary components to PM1 in June 2017 was more prominent, with the total proportion of SNA (sulfate, nitrate, and ammonium) and more-oxidized oxygenated OA (MO-OOA) to PM1 increased by approximately 10 %. Secondary species of NH4NO3, (NH4)2SO4, and MO-OOA, as well as black carbon, collectively contributed the vast majority of aerosol extinction coefficient (bext), with the four species contributing a total of ≥96 % to bext at 260 m. Hydrocarbon-like OA, cooking OA, and less-oxidized oxygenated OA have undergone significant reductions, so continued emphasis on controlling local sources to reduce these three aerosol species and addressing regional sources to further mitigate overall aerosol species is imperative. In lower pollution situation, the diurnal variation of PM was smoother, and its pollution sources were more regionally uniform, which might be attributed to the reduced diversity and complexity in the physical and chemical processes in air pollution.

SELECTION OF CITATIONS
SEARCH DETAIL
...