Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
IMA Fungus ; 15(1): 19, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049135

ABSTRACT

A Special-purpose Committee on Fungal Names with the Same Epithet was established at the XIX International Botanical Congress (IBC) in Shenzhen, China in 2017, with a mandate to report to the 12th International Mycological Congress (IMC) with recommendations on a preferred course of action with respect to names of pleomorphic fungi sharing the same epithet under the International Code of Nomenclature for algae, fungi, and plants. This report provides a synthesis of the deliberations from the Special-purpose Committee. We discuss the arguments for and against the proposed solution to the problems that have arisen regarding the nomenclature of fungi described in multiple morphs using the same epithet. We also propose a gentler method of addressing the problem using existing procedures.

2.
IMA Fungus ; 7(2): 309-315, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27990337

ABSTRACT

Ustilago is a polyphyletic genus of smut fungi found mainly on Poaceae. The development of a taxonomy that reflects phylogeny requires subdivision of Ustilago into smaller monophyletic genera. Several separate systematic analyses have determined that Macalpinomyces mackinlayi, M. tubiformis, Tolyposporella pachycarpa, Ustilago bouriquetii and U. maydis, occupy a unique phylogenetic position within the Ustilaginaceae. A previously introduced monotypic generic name typified by U. maydis, Mycosarcoma, is available to accommodate these species, which resolves one component of polyphyly for Ustilagos.lat. in Ustilaginaceae. An emended description of Mycosarcoma is provided to reflect the morphological synapomorphies of this monophyletic group. A specimen of Ustilago maydis that has had its genome sequenced is designated as a neotype for this species. Taxonomic stability will further be provided by a forthcoming proposal to conserve the name Uredo maydis over Lycoperdon zeae, which has priority by date, in order to preserve the well-known epithet maydis.

3.
Int J Syst Evol Microbiol ; 59(Pt 9): 2274-6, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19620372

ABSTRACT

A liberibacter (isolate NZ082226) was detected in a symptomatic tomato plant and subsequently in five other members of the family Solanaceae: capsicum, potato, tamarillo, cape gooseberry and chilli. Phylogenetic analyses of the 16S rRNA gene sequence, the deduced amino acid sequence of the rplJ gene and a partial nucleotide sequence of the beta operon indicated that isolate NZ082226 represents a novel candidate species of 'Candidatus Liberibacter', for which the name 'Candidatus Liberibacter solanacearum' is proposed.


Subject(s)
Plant Diseases/microbiology , Rhizobiaceae/classification , Rhizobiaceae/isolation & purification , Solanaceae/microbiology , Bacterial Proteins/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Ribosomal Proteins/genetics , Sequence Analysis, DNA
4.
Mycol Res ; 110(Pt 4): 423-30, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16431094

ABSTRACT

Indigenous to Europe, the blackberry rust fungus Phragmidium violaceum was introduced to Australia and subsequently appeared in New Zealand, with the most recent authorised introductions to Australia specifically for the biological control of European blackberry. Markers for 'selective amplification of microsatellite polymorphic loci' (SAMPL) were developed for studying the population genetics of P. violaceum. Modification of one of the two SAMPL primers with a HaeIII adapter (H) revealed significantly greater levels of genetic variation than primers used to generate AFLPs, the latter revealing little or no variation among 25 Australasian and 19 European isolates of P. violaceum. SAMPL was used to describe genetic variation among these 44 isolates of P. violaceum from 51 loci generated using primer pairs (GACA)4 +H-G and R1+H-G. The European isolates were more diverse than Australasian isolates, with 37 and 22 % polymorphic loci, respectively. Cluster analysis revealed geographic clades, with Australasian isolates forming one cluster separated from two clusters comprising the European isolates. However, low bootstrap support at these clades suggested that Australian isolates had not differentiated significantly from European isolates since the first record of P. violaceum in Australia in 1984. In general, the results support two hypotheses. First, that the population of P. violaceum in Australia was founded from a subset of individuals originating from Europe. Second, that P. violaceum in New Zealand originated from the Australian population of P. violaceum, probably by wind dispersal of urediniospores across the Tasman Sea. The application of SAMPL markers to the current biological control programme for European blackberry is discussed.


Subject(s)
Fungi/genetics , Rosaceae/growth & development , Australasia , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , Deoxyribonucleases, Type II Site-Specific/chemistry , Electrophoresis, Polyacrylamide Gel , Europe , Fungi/classification , Genetic Variation , Microsatellite Repeats , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL