Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15662, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977836

ABSTRACT

Scincidae is one of the most species-rich and cosmopolitan clades of squamate reptiles. Abundant disarticulated fossil material has also been attributed to this group, however, no complete pre-Cenozoic crown-scincid specimens have been found. A specimen in Burmite (99 MYA) is the first fossil that can be unambiguously referred to this clade. Our analyses place it as nested within extant skinks, supported by the presence of compound osteoderms formed by articulated small ostedermites. The specimen has a combination of dorsal and ventral compound osteoderms and overlapping cycloid scales that is limited to skinks. We propose that this type of osteoderm evolved as a response to an increased overlap of scales, and to reduced stiffness of the dermal armour. Compound osteoderms could be a key innovation that facilitated diversification in this megadiverse family.


Subject(s)
Amber , Fossils , Animals , Fossils/anatomy & histology , Lizards/anatomy & histology , Phylogeny , Biological Evolution
2.
Sci Rep ; 13(1): 2907, 2023 02 18.
Article in English | MEDLINE | ID: mdl-36808156

ABSTRACT

When a vertebrate carcass begins its decay in terrestrial environments, a succession of different necrophagous arthropod species, mainly insects, are attracted. Trophic aspects of the Mesozoic environments are of great comparative interest, to understand similarities and differences with extant counterparts. Here, we comprehensively study several exceptional Cretaceous amber pieces, in order to determine the early necrophagy by insects (flies in our case) on lizard specimens, ca. 99 Ma old. To obtain well-supported palaeoecological data from our amber assemblages, special attention has been paid in the analysis of the taphonomy, succession (stratigraphy), and content of the different amber layers, originally resin flows. In this respect, we revisited the concept of syninclusion, establishing two categories to make the palaeoecological inferences more accurate: eusyninclusions and parasyninclusions. We observe that resin acted as a "necrophagous trap". The lack of dipteran larvae and the presence of phorid flies indicates decay was in an early stage when the process was recorded. Similar patterns to those in our Cretaceous cases have been observed in Miocene ambers and actualistic experiments using sticky traps, which also act as "necrophagous traps"; for example, we observed that flies were indicative of the early necrophagous stage, but also ants. In contrast, the absence of ants in our Late Cretaceous cases confirms the rareness of ants during the Cretaceous and suggests that early ants lacked this trophic strategy, possibly related to their sociability and recruitment foraging strategies, which developed later in the dimensions we know them today. This situation potentially made necrophagy by insects less efficient in the Mesozoic.


Subject(s)
Ants , Arthropods , Lizards , Animals , Amber , Fossils , Insecta , Resins, Plant
3.
Sci Rep ; 12(1): 1660, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102237

ABSTRACT

We here report on a well-preserved juvenile lizard specimen in Albian amber (ca. 110 mya) from the Hkamti site (Myanmar). This new taxon is represented by an articulated skull and the anterior portion of the trunk, including the pectoral girdle and forelimbs. The scleral ossicles and eyelid are also visible, and the specimen exhibits pristine detail of the integument (of both head and body). In a combined molecular and morphological analysis, it was consistently recovered as a scincoid lizard (Scinciformata), as sister to Tepexisaurus + Xantusiidae. However, the phylogenetic position of the new taxon should be interpreted with caution as the holotype is an immature individual. We explored the possibility of miscoding ontogenetically variable characters by running alternative analyses in which these characters were scored as missing data for our taxon. With the exception of one tree, in which it was sister to Amphisbaenia, the specimen was recovered as a Pan-xantusiid. Moreover, we cannot rule out the possibility that it represents a separate lineage of uncertain phylogenetic position, as it is the case for many Jurassic and Cretaceous taxa. Nonetheless, this fossil offers a rare opportunity to glimpse the external appearance of one group of lizards during the Early Cretaceous.


Subject(s)
Amber , Fossils/anatomy & histology , Integumentary System/anatomy & histology , Lizards/anatomy & histology , Animals , Biological Evolution , Fossils/diagnostic imaging , Integumentary System/diagnostic imaging , Lizards/genetics , Myanmar , Phylogeny , X-Ray Microtomography
4.
Curr Biol ; 31(15): 3303-3314.e3, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34129826

ABSTRACT

Oculudentavis khaungraae was described based on a tiny skull trapped in amber. The slender tapering rostrum with retracted narial openings, large eyes, and short vaulted braincase led to its identification as the smallest avian dinosaur on record, comparable to the smallest living hummingbirds. Despite its bird-like appearance, Oculudentavis showed several features inconsistent with its original phylogenetic placement. Here, we describe a more complete specimen that demonstrates Oculudentavis is actually a bizarre lizard of uncertain position. The new specimen is described as a new species within the genus Oculudentavis. The new interpretation and phylogenetic placement highlight a rare case of convergent evolution in skull proportions but apparently not in morphological characters. Our results re-affirm the importance of Myanmar amber in yielding unusual taxa from a forest ecosystem rarely represented in the fossil record.


Subject(s)
Dinosaurs , Fossils , Lizards , Amber , Animals , Birds , Dinosaurs/anatomy & histology , Ecosystem , Lizards/anatomy & histology , Phylogeny
5.
Appl Spectrosc ; 75(7): 839-845, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33393352

ABSTRACT

Attenuated Total Reflection (ATR) spectroscopy coupled with a microscope allows for the analysis of specimens without any preparation, spatially correlated with the morphology of the specimen. These characteristics make micro-ATR systems very useful for studying gemstones and in particular amber samples. Indeed, in this report, the micro-ATR technique was used to characterize three Burmite samples, as case studies. Particularly, focusing the ATR crystal spot on the amber surface where a difference in the Ultraviolet (UV) reaction was previously detected, thereby relative differences in the IR spectrum could be analyzed. Here we present a methodology combining the UV imaging technique with the micro-Attenuated total reflection Fourier transform infrared spectroscopy (micro-ATR/FT-IR) analyses, in order to correlate the fluorescence information with the molecular vibrational modes of amber and their relative spatial distribution. Finally, this work is intended as an initial methodology study and part of the amber characterization project, focused on characterizing the Burmese amber collection of the Peretti Museum Foundation from several disciplines (i.e., palaeoentomology, vibrational spectroscopy, neutron tomography, etc.).


Subject(s)
Amber , Microscopy , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
7.
Anal Bioanal Chem ; 398(7-8): 2915-28, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20967428

ABSTRACT

Whereas colored andesine/labradorite had been thought unique to the North American continent, red andesine supposedly coming from the Democratic Republic of the Congo (DR Congo), Mongolia, and Tibet has been on the market for the last 10 years. After red Mongolian andesine was proven to be Cu-diffused by heat treatment from colorless andesine starting material, efforts were taken to distinguish minerals sold as Tibetan and Mongolian andesine. Using nanosecond laser ablation-inductively coupled plasma mass spectrometry (ICPMS), the main and trace element composition of andesines from different origins was determined. Mexican, Oregon, and Asian samples were clearly distinguishable by their main element content (CaO, SiO(2) Na(2)O, and K(2)O), whereas the composition of Mongolian, Tibetan, and DR Congo material was within the same range. Since the Li concentration was shown to be correlated with the Cu concentration, the formerly proposed differentiation by the Ba/Sr vs. Ba/Li ratio does not distinguish between samples from Tibet and Mongolia, but only between red and colorless material. Using femtosecond laser ablation multi-collector ICPMS in high-resolution mode, laboratory diffused samples showed variations up to 3‰ for (65)Cu/(63)Cu within one mineral due to the diffusion process. Ar isotope ratio measurements proved that heat treatment will reduce the amount of radiogenic (40)Ar in the samples significantly. Only low levels of radiogenic Ar were found in samples collected on-site in both mine locations in Tibet. Together with a high intra-sample variability of the Cu isotope ratio, andesine samples labeled as coming from Tibet are most probably Cu-diffused, using initially colorless Mongolian andesines as starting material. Therefore, at the moment, the only reliable source of colored andesine/labradorite remains the state of Oregon.

SELECTION OF CITATIONS
SEARCH DETAIL