ABSTRACT
Understanding how emerging infectious diseases spread within and between countries is essential to contain future pandemics. Spread to new areas requires connectivity between one or more sources and a suitable local environment, but how these two factors interact at different stages of disease emergence remains largely unknown. Further, no analytical framework exists to examine their roles. Here we develop a dynamic modelling approach for infectious diseases that explicitly models both connectivity via human movement and environmental suitability interactions. We apply it to better understand recently observed (1995-2019) patterns as well as predict past unobserved (1983-2000) and future (2020-2039) spread of dengue in Mexico and Brazil. We find that these models can accurately reconstruct long-term spread pathways, determine historical origins, and identify specific routes of invasion. We find early dengue invasion is more heavily influenced by environmental factors, resulting in patchy non-contiguous spread, while short and long-distance connectivity becomes more important in later stages. Our results have immediate practical applications for forecasting and containing the spread of dengue and emergence of new serotypes. Given current and future trends in human mobility, climate, and zoonotic spillover, understanding the interplay between connectivity and environmental suitability will be increasingly necessary to contain emerging and re-emerging pathogens.
Subject(s)
Dengue , Dengue/epidemiology , Dengue/transmission , Dengue/virology , Humans , Brazil/epidemiology , Mexico/epidemiology , Animals , Dengue Virus/physiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/transmission , Environment , Human Migration , Aedes/virologyABSTRACT
Current knowledge of dengue virus (DENV) transmission provides only a partial understanding of a complex and dynamic system yielding a public health track record that has more failures than successes. An important part of the problem is that the foundation for contemporary interventions includes a series of longstanding, but untested, assumptions based on a relatively small portion of the human population; i.e., people who are convenient to study because they manifest clinically apparent disease. Approaching dengue from the perspective of people with overt illness has produced an extensive body of useful literature. It has not, however, fully embraced heterogeneities in virus transmission dynamics that are increasingly recognized as key information still missing in the struggle to control the most important insect-transmitted viral infection of humans. Only in the last 20 years have there been significant efforts to carry out comprehensive longitudinal dengue studies. This manuscript provides the rationale and comprehensive, integrated description of the methodology for a five-year longitudinal cohort study based in the tropical city of Iquitos, in the heart of the Peruvian Amazon. Primary data collection for this study was completed in 2019. Although some manuscripts have been published to date, our principal objective here is to support subsequent publications by describing in detail the structure, methodology, and significance of a specific research program. Our project was designed to study people across the entire continuum of disease, with the ultimate goal of quantifying heterogeneities in human variables that affect DENV transmission dynamics and prevention. Because our study design is applicable to other Aedes transmitted viruses, we used it to gain insights into Zika virus (ZIKV) transmission when during the project period ZIKV was introduced and circulated in Iquitos. Our prospective contact cluster investigation design was initiated by detecttion of a person with a symptomatic DENV infection and then followed that person's immediate contacts. This allowed us to monitor individuals at high risk of DENV infection, including people with clinically inapparent and mild infections that are otherwise difficult to detect. We aimed to fill knowledge gaps by defining the contribution to DENV transmission dynamics of (1) the understudied majority of DENV-infected people with inapparent and mild infections and (2) epidemiological, entomological, and socio-behavioral sources of heterogeneity. By accounting for factors underlying variation in each person's contribution to transmission we sought to better determine the type and extent of effort needed to better prevent virus transmission and disease.
Subject(s)
Arboviruses , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Longitudinal Studies , Prospective Studies , Peru/epidemiology , Zika Virus Infection/epidemiologyABSTRACT
Probabilistic forecasts play an indispensable role in answering questions about the spread of newly emerged pathogens. However, uncertainties about the epidemiology of emerging pathogens can make it difficult to choose among alternative model structures and assumptions. To assess the potential for uncertainties about emerging pathogens to affect forecasts of their spread, we evaluated the performance 16 forecasting models in the context of the 2015-2016 Zika epidemic in Colombia. Each model featured a different combination of assumptions about human mobility, spatiotemporal variation in transmission potential, and the number of virus introductions. We found that which model assumptions had the most ensemble weight changed through time. We additionally identified a trade-off whereby some individual models outperformed ensemble models early in the epidemic, but on average the ensembles outperformed all individual models. Our results suggest that multiple models spanning uncertainty across alternative assumptions are necessary to obtain robust forecasts for emerging infectious diseases.
Subject(s)
Communicable Diseases, Emerging/epidemiology , Epidemics/statistics & numerical data , Epidemiological Monitoring , Zika Virus Infection/epidemiology , Colombia/epidemiology , Data Interpretation, Statistical , Datasets as Topic , Forecasting/methods , Humans , Models, Statistical , Spatio-Temporal Analysis , UncertaintyABSTRACT
An effective and widely used vaccine could reduce the burden of dengue virus (DENV) around the world. DENV is endemic in Puerto Rico, where the dengue vaccine CYD-TDV is currently under consideration as a control measure. CYD-TDV has demonstrated efficacy in clinical trials in vaccinees who had prior dengue virus infection. However, in vaccinees who had no prior dengue virus infection, the vaccine had a modestly elevated risk of hospitalization and severe disease. The WHO therefore recommended a strategy of pre-vaccination screening and vaccination of seropositive persons. To estimate the cost-effectiveness and benefits of this intervention (i.e., screening and vaccination of seropositive persons) in Puerto Rico, we simulated 10 years of the intervention in 9-year-olds using an agent-based model. Across the entire population, we found that 5.5% (4.6%-6.3%) of dengue hospitalizations could be averted. However, we also found that 0.057 (0.045-0.073) additional hospitalizations could occur for every 1,000 people in Puerto Rico due to DENV-naïve children who were vaccinated following a false-positive test results for prior exposure. The ratio of the averted hospitalizations among all vaccinees to additional hospitalizations among DENV-naïve vaccinees was estimated to be 19 (13-24). At a base case cost of vaccination of 382 USD, we found an incremental cost-effectiveness ratio of 122,000 USD per QALY gained. Our estimates can provide information for considerations to introduce the CYD-TDV vaccine in Puerto Rico.
Subject(s)
Cost-Benefit Analysis , Dengue Vaccines/economics , Dengue Vaccines/immunology , Dengue/epidemiology , Dengue/prevention & control , Vaccination/economics , Humans , Puerto Rico/epidemiologyABSTRACT
BACKGROUND: Human mobility among residential locations can drive dengue virus (DENV) transmission dynamics. Recently, it was shown that individuals with symptomatic DENV infection exhibit significant changes in their mobility patterns, spending more time at home during illness. This change in mobility is predicted to increase the risk of acquiring infection for those living with or visiting the ill individual. It has yet to be considered, however, whether social contacts are also changing their mobility, either by socially distancing themselves from the infectious individual or increasing contact to help care for them. Social, or physical, distancing and caregiving could have diverse yet important impacts on DENV transmission dynamics; therefore, it is necessary to better understand the nature and frequency of these behaviors including their effect on mobility. METHODOLOGY AND PRINCIPAL FINDINGS: Through community-based febrile illness surveillance and RT-PCR infection confirmation, 67 DENV positive (DENV+) residents were identified in the city of Iquitos, Peru. Using retrospective interviews, data were collected on visitors and home-based care received during the illness. While 15% of participants lost visitors during their illness, 22% gained visitors; overall, 32% of all individuals (particularly females) received visitors while symptomatic. Caregiving was common (90%), particularly caring by housemates (91%) and caring for children (98%). Twenty-eight percent of caregivers changed their behavior enough to have their work (and, likely, mobility patterns) affected. This was significantly more likely when caring for individuals with low "health-related quality of well-being" during illness (Fisher's Exact, p = 0.01). CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that social contacts of individuals with dengue modify their patterns of visitation and caregiving. The observed mobility changes could impact a susceptible individual's exposure to virus or a presymptomatic/clinically inapparent individual's contribution to onward transmission. Accounting for changes in social contact mobility is imperative in order to get a more accurate understanding of DENV transmission.
Subject(s)
Caregivers/psychology , Dengue/psychology , Dengue/transmission , Physical Distancing , Adolescent , Adult , Child , Data Collection , Dengue/epidemiology , Female , Humans , Male , Peru/epidemiology , Young AdultABSTRACT
After the Zika virus (ZIKV) epidemic in the Americas in 2016, both Zika and dengue incidence declined to record lows in many countries in 2017-2018, but in 2019 dengue resurged in Brazil, causing ~2.1 million cases. In this study we use epidemiological, climatological and genomic data to investigate dengue dynamics in recent years in Brazil. First, we estimate dengue virus force of infection (FOI) and model mosquito-borne transmission suitability since the early 2000s. Our estimates reveal that DENV transmission was low in 2017-2018, despite conditions being suitable for viral spread. Our study also shows a marked decline in dengue susceptibility between 2002 and 2019, which could explain the synchronous decline of dengue in the country, partially as a result of protective immunity from prior ZIKV and/or DENV infections. Furthermore, we performed phylogeographic analyses using 69 newly sequenced genomes of dengue virus serotype 1 and 2 from Brazil, and found that the outbreaks in 2018-2019 were caused by local DENV lineages that persisted for 5-10 years, circulating cryptically before and after the Zika epidemic. We hypothesize that DENV lineages may circulate at low transmission levels for many years, until local conditions are suitable for higher transmission, when they cause major outbreaks.
Subject(s)
Dengue Virus/immunology , Dengue/epidemiology , Disease Susceptibility/immunology , Epidemics/statistics & numerical data , Zika Virus Infection/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , Brazil/epidemiology , Child , Child, Preschool , Dengue/immunology , Dengue/transmission , Dengue/virology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Epidemics/prevention & control , Epidemiological Monitoring , Female , Genome, Viral/genetics , Humans , Immunity, Heterologous , Incidence , Infant , Infant, Newborn , Male , Middle Aged , Molecular Typing , Mosquito Vectors/virology , Phylogeography , Serotyping , Young Adult , Zika Virus/immunology , Zika Virus Infection/epidemiologyABSTRACT
Several hundred thousand Zika cases have been reported across the Americas since 2015. Incidence of infection was likely much higher, however, due to a high frequency of asymptomatic infection and other challenges that surveillance systems faced. Using a hierarchical Bayesian model with empirically-informed priors, we leveraged multiple types of Zika case data from 15 countries to estimate subnational reporting probabilities and infection attack rates (IARs). Zika IAR estimates ranged from 0.084 (95% CrI: 0.067-0.096) in Peru to 0.361 (95% CrI: 0.214-0.514) in Ecuador, with significant subnational variability in every country. Totaling infection estimates across these and 33 other countries and territories, our results suggest that 132.3 million (95% CrI: 111.3-170.2 million) people in the Americas had been infected by the end of 2018. These estimates represent the most extensive attempt to determine the size of the Zika epidemic in the Americas, offering a baseline for assessing the risk of future Zika epidemics in this region.
Subject(s)
Zika Virus Infection/epidemiology , Americas/epidemiology , Asymptomatic Infections/epidemiology , Bayes Theorem , Ecuador/epidemiology , Epidemics , Humans , Incidence , Peru/epidemiology , Zika Virus , Zika Virus Infection/transmission , Zika Virus Infection/virologyABSTRACT
Costa Rica is a candidate to eliminate malaria by 2020. The remaining malaria transmission hotspots are located within the Huétar Norte Region (HNR), where 90% of the country's 147 malaria cases have occurred since 2016, following a 33-month period without transmission. Here, we examine changes in transmission with the implementation of a supervised seven-day chloroquine and primaquine treatment (7DCPT). We also evaluate the impact of a focal mass drug administration (MDA) in January 2019 at Boca Arenal, the town in HNR reporting the greatest local transmission. We found that the change to a seven-day treatment protocol, from the prior five-day program, was associated with a 98% reduction in malaria transmission. The MDA helped to reduce transmission, keeping the basic reproduction number, RT, significantly below 1, for at least four months. However, following new imported cases from Nicaragua, autochthonous transmission resumed. Our results highlight the importance of appropriate treatment delivery to reduce malaria transmission, and the challenge that highly mobile populations, if their malaria is not treated, pose to regional elimination efforts in Mesoamerica and México.
ABSTRACT
[This corrects the article DOI: 10.1371/journal.pntd.0007756.].
ABSTRACT
Human mobility, both short and long term, are important considerations in the study of numerous systems. Economic and technological advances have led to a more interconnected global community, further increasing the need for considerations of human mobility. While data on human mobility are better recorded in many developed countries, availability of such data remains limited in many low- and middle-income countries around the world, particularly at the fine temporal and spatial scales required by many applications. In this study, we used 5-year census-based internal migration microdata for 32 departments in Colombia (i.e., Admin-1 level) to develop a novel spatial interaction modeling approach for estimating migration, at a finer spatial scale, among the 1,122 municipalities in the country (i.e., Admin-2 level). Our modeling approach addresses a significant lack of migration data at administrative unit levels finer than those at which migration data are typically recorded. Due to the widespread availability of census-based migration microdata at the Admin-1 level, our modeling approach opens up for the possibilities of modeling migration patterns at Admin-2 and Admin-3 levels across many other countries where such data are currently lacking.
Subject(s)
Human Migration , Censuses , Colombia , Computer Simulation , Humans , Likelihood Functions , Population Dynamics , Socioeconomic FactorsABSTRACT
Time series data provide a crucial window into infectious disease dynamics, yet their utility is often limited by the spatially aggregated form in which they are presented. When working with time series data, violating the implicit assumption of homogeneous dynamics below the scale of spatial aggregation could bias inferences about underlying processes. We tested this assumption in the context of the 2015-2016 Zika epidemic in Colombia, where time series of weekly case reports were available at national, departmental, and municipal scales. First, we performed a descriptive analysis, which showed that the timing of departmental-level epidemic peaks varied by three months and that departmental-level estimates of the time-varying reproduction number, R(t), showed patterns that were distinct from a national-level estimate. Second, we applied a classification algorithm to six features of proportional cumulative incidence curves, which showed that variability in epidemic duration, the length of the epidemic tail, and consistency with a cumulative normal density curve made the greatest contributions to distinguishing groups. Third, we applied this classification algorithm to data simulated with a stochastic transmission model, which showed that group assignments were consistent with simulated differences in the basic reproduction number, R0. This result, along with associations between spatial drivers of transmission and group assignments based on observed data, suggests that the classification algorithm is capable of detecting differences in temporal patterns that are associated with differences in underlying drivers of incidence patterns. Overall, this diversity of temporal patterns at local scales underscores the value of spatially disaggregated time series data.
Subject(s)
Zika Virus Infection/epidemiology , Zika Virus Infection/transmission , Zika Virus , Basic Reproduction Number , Colombia/epidemiology , Epidemics , Humans , Incidence , Space-Time Clustering , Time FactorsABSTRACT
BACKGROUND: Human mobility plays a central role in shaping pathogen transmission by generating spatial and/or individual variability in potential pathogen-transmitting contacts. Recent research has shown that symptomatic infection can influence human mobility and pathogen transmission dynamics. Better understanding the complex relationship between symptom severity, infectiousness, and human mobility requires quantification of movement patterns throughout infectiousness. For dengue virus (DENV), human infectiousness peaks 0-2 days after symptom onset, making it paramount to understand human movement patterns from the beginning of illness. METHODOLOGY AND PRINCIPAL FINDINGS: Through community-based febrile surveillance and RT-PCR assays, we identified a cohort of DENV+ residents of the city of Iquitos, Peru (n = 63). Using retrospective interviews, we measured the movements of these individuals when healthy and during each day of symptomatic illness. The most dramatic changes in mobility occurred during the first three days after symptom onset; individuals visited significantly fewer locations (Wilcoxon test, p = 0.017) and spent significantly more time at home (Wilcoxon test, p = 0.005), compared to when healthy. By 7-9 days after symptom onset, mobility measures had returned to healthy levels. Throughout an individual's symptomatic period, the day of illness and their subjective sense of well-being were the most significant predictors for the number of locations and houses they visited. CONCLUSIONS/SIGNIFICANCE: Our study is one of the first to collect and analyze human mobility data at a daily scale during symptomatic infection. Accounting for the observed changes in human mobility throughout illness will improve understanding of the impact of disease on DENV transmission dynamics and the interpretation of public health-based surveillance data.
Subject(s)
Dengue/epidemiology , Illness Behavior , Locomotion , Adolescent , Dengue Virus/isolation & purification , Female , Fever , Humans , Male , Peru/epidemiology , Retrospective Studies , Surveys and QuestionnairesABSTRACT
The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.
Subject(s)
Epidemics , Genomics/methods , Zika Virus Infection/epidemiology , Aedes/virology , Animals , Cuba/epidemiology , Humans , Incidence , Mosquito Control , Phylogeny , RNA, Viral/chemistry , RNA, Viral/metabolism , Sequence Analysis, RNA , Travel , West Indies/epidemiology , Zika Virus/classification , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/transmission , Zika Virus Infection/virologyABSTRACT
During the last 50 years, the geographic range of the mosquito Aedes aegypti has increased dramatically, in parallel with a sharp increase in the disease burden from the viruses it transmits, including Zika, chikungunya, and dengue. There is a growing consensus that vector control is essential to prevent Aedes-borne diseases, even as effective vaccines become available. What remains unclear is how effective vector control is across broad operational scales because the data and the analytical tools necessary to isolate the effect of vector-oriented interventions have not been available. We developed a statistical framework to model Ae. aegypti abundance over space and time and applied it to explore the impact of citywide vector control conducted by the Ministry of Health (MoH) in Iquitos, Peru, over a 12-year period. Citywide interventions involved multiple rounds of intradomicile insecticide space spray over large portions of urban Iquitos (up to 40% of all residences) in response to dengue outbreaks. Our model captured significant levels of spatial, temporal, and spatio-temporal variation in Ae. aegypti abundance within and between years and across the city. We estimated the shape of the relationship between the coverage of neighborhood-level vector control and reductions in female Ae. aegypti abundance; i.e., the dose-response curve. The dose-response curve, with its associated uncertainties, can be used to gauge the necessary spraying effort required to achieve a desired effect and is a critical tool currently absent from vector control programs. We found that with complete neighborhood coverage MoH intra-domicile space spray would decrease Ae. aegypti abundance on average by 67% in the treated neighborhood. Our framework can be directly translated to other interventions in other locations with geolocated mosquito abundance data. Results from our analysis can be used to inform future vector-control applications in Ae. aegypti endemic areas globally.
Subject(s)
Aedes/physiology , Mosquito Control/methods , Mosquito Vectors/physiology , Aedes/drug effects , Aedes/growth & development , Animals , Cities , Female , Insecticides/pharmacology , Male , Mosquito Vectors/drug effects , Mosquito Vectors/growth & development , Peru , Population Dynamics , Seasons , Spatio-Temporal AnalysisABSTRACT
Prophylactic vaccination is a powerful tool for reducing the burden of infectious diseases, due to a combination of direct protection of vaccinees and indirect protection of others via herd immunity. Computational models play an important role in devising strategies for vaccination by making projections of its impacts on public health. Such projections are subject to uncertainty about numerous factors, however. For example, many vaccine efficacy trials focus on measuring protection against disease rather than protection against infection, leaving the extent of breakthrough infections (i.e., disease ameliorated but infection unimpeded) among vaccinees unknown. Our goal in this study was to quantify the extent to which uncertainty about breakthrough infections results in uncertainty about vaccination impact, with a focus on vaccines for dengue. To realistically account for the many forms of heterogeneity in dengue virus (DENV) transmission, which could have implications for the dynamics of indirect protection, we used a stochastic, agent-based model for DENV transmission informed by more than a decade of empirical studies in the city of Iquitos, Peru. Following 20 years of routine vaccination of nine-year-old children at 80% coverage, projections of the proportion of disease episodes averted varied by a factor of 1.76 (95% CI: 1.54-2.06) across the range of uncertainty about breakthrough infections. This was equivalent to the range of vaccination impact projected across a range of uncertainty about vaccine efficacy of 0.268 (95% CI: 0.210-0.329). Until uncertainty about breakthrough infections can be addressed empirically, our results demonstrate the importance of accounting for it in models of vaccination impact.
Subject(s)
Dengue/prevention & control , Dengue/transmission , Systems Analysis , Uncertainty , Viral Vaccines/administration & dosage , Calibration , Child , Computer Simulation , Humans , PeruABSTRACT
Vaccine efficacy (VE) estimates are crucial for assessing the suitability of dengue vaccine candidates for public health implementation, but efficacy trials are subject to a known bias to estimate VE toward the null if heterogeneous exposure is not accounted for in the analysis of trial data. In light of many well-characterized sources of heterogeneity in dengue virus (DENV) transmission, our goal was to estimate the potential magnitude of this bias in VE estimates for a hypothetical dengue vaccine. To ensure that we realistically modeled heterogeneous exposure, we simulated city-wide DENV transmission and vaccine trial protocols using an agent-based model calibrated with entomological and epidemiological data from long-term field studies in Iquitos, Peru. By simulating a vaccine with a true VE of 0.8 in 1,000 replicate trials each designed to attain 90% power, we found that conventional methods underestimated VE by as much as 21% due to heterogeneous exposure. Accounting for the number of exposures in the vaccine and placebo arms eliminated this bias completely, and the more realistic option of including a frailty term to model exposure as a random effect reduced this bias partially. We also discovered a distinct bias in VE estimates away from the null due to lower detectability of primary DENV infections among seronegative individuals in the vaccinated group. This difference in detectability resulted from our assumption that primary infections in vaccinees who are seronegative at baseline resemble secondary infections, which experience a shorter window of detectable viremia due to a quicker immune response. This resulted in an artefactual finding that VE estimates for the seronegative group were approximately 1% greater than for the seropositive group. Simulation models of vaccine trials that account for these factors can be used to anticipate the extent of bias in field trials and to aid in their interpretation.
Subject(s)
Clinical Trials, Phase III as Topic , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/immunology , Randomized Controlled Trials as Topic , Adolescent , Adult , Bias , Child , Child, Preschool , Dengue/drug therapy , Dengue/virology , Dengue Vaccines/administration & dosage , Dengue Virus/drug effects , Dengue Virus/physiology , Humans , Peru , Research Design , Treatment Outcome , Viremia/drug therapy , Viremia/virology , Young AdultABSTRACT
BACKGROUND: Mathematical models of transmission dynamics are routinely fitted to epidemiological time series, which must inevitably be aggregated at some spatial scale. Weekly case reports of chikungunya have been made available nationally for numerous countries in the Western Hemisphere since late 2013, and numerous models have made use of this data set for forecasting and inferential purposes. Motivated by an abundance of literature suggesting that the transmission of this mosquito-borne pathogen is localized at scales much finer than nationally, we fitted models at three different spatial scales to weekly case reports from Colombia to explore limitations of analyses of nationally aggregated time series data. METHODS: We adapted the recently developed Disease Transmission Kernel (DTK)-Dengue model for modeling chikungunya virus (CHIKV) transmission, given the numerous similarities of these viruses vectored by a common mosquito vector. We fitted versions of this model specified at different spatial scales to weekly case reports aggregated at different spatial scales: (1) single-patch national model fitted to national data; (2) single-patch departmental models fitted to departmental data; and (3) multi-patch departmental models fitted to departmental data, where the multiple patches refer to municipalities within a department. We compared the consistency of simulations from fitted models with empirical data. RESULTS: We found that model consistency with epidemic dynamics improved with increasing spatial granularity of the model. Specifically, the sum of single-patch departmental model fits better captured national-level temporal patterns than did a single-patch national model. Likewise, multi-patch departmental model fits better captured department-level temporal patterns than did single-patch departmental model fits. Furthermore, inferences about municipal-level incidence based on multi-patch departmental models fitted to department-level data were positively correlated with municipal-level data that were withheld from model fitting. CONCLUSIONS: Our model performed better when posed at finer spatial scales, due to better matching between human populations with locally relevant risk. Confronting spatially aggregated models with spatially aggregated data imposes a serious structural constraint on model behavior by averaging over epidemiologically meaningful spatial variation in drivers of transmission, impairing the ability of models to reproduce empirical patterns.
Subject(s)
Chikungunya Fever/epidemiology , Chikungunya virus/pathogenicity , Mosquito Vectors/pathogenicity , Animals , Colombia , Humans , Spatial AnalysisABSTRACT
Despite a long history of mosquito-borne virus epidemics in the Americas, the impact of the Zika virus (ZIKV) epidemic of 2015-2016 was unexpected. The need for scientifically informed decision-making is driving research to understand the emergence and spread of ZIKV. To support that research, we assembled a data set of key covariates for modeling ZIKV transmission dynamics in Colombia, where ZIKV transmission was widespread and the government made incidence data publically available. On a weekly basis between January 1, 2014 and October 1, 2016 at three administrative levels, we collated spatiotemporal Zika incidence data, nine environmental variables, and demographic data into a single downloadable database. These new datasets and those we identified, processed, and assembled at comparable spatial and temporal resolutions will save future researchers considerable time and effort in performing these data processing steps, enabling them to focus instead on extracting epidemiological insights from this important data set. Similar approaches could prove useful for filling data gaps to enable epidemiological analyses of future disease emergence events.
Subject(s)
Epidemics , Zika Virus Infection/epidemiology , Zika Virus , Colombia/epidemiology , HumansABSTRACT
Pathogens inflict a wide variety of disease manifestations on their hosts, yet the impacts of disease on the behaviour of infected hosts are rarely studied empirically and are seldom accounted for in mathematical models of transmission dynamics. We explored the potential impacts of one of the most common disease manifestations, fever, on a key determinant of pathogen transmission, host mobility, in residents of the Amazonian city of Iquitos, Peru. We did so by comparing two groups of febrile individuals (dengue-positive and dengue-negative) with an afebrile control group. A retrospective, semi-structured interview allowed us to quantify multiple aspects of mobility during the two-week period preceding each interview. We fitted nested models of each aspect of mobility to data from interviews and compared models using likelihood ratio tests to determine whether there were statistically distinguishable differences in mobility attributable to fever or its aetiology. Compared with afebrile individuals, febrile study participants spent more time at home, visited fewer locations, and, in some cases, visited locations closer to home and spent less time at certain types of locations. These multifaceted impacts are consistent with the possibility that disease-mediated changes in host mobility generate dynamic and complex changes in host contact network structure.
Subject(s)
Fever/epidemiology , Travel , Case-Control Studies , Cities , Dengue/epidemiology , Humans , Likelihood Functions , Models, Theoretical , Peru/epidemiology , Retrospective StudiesABSTRACT
Individual-based models of infectious disease transmission depend on accurate quantification of fine-scale patterns of human movement. Existing models of movement either pertain to overly coarse scales, simulate some aspects of movement but not others, or were designed specifically for populations in developed countries. Here, we propose a generalizable framework for simulating the locations that an individual visits, time allocation across those locations, and population-level variation therein. As a case study, we fit alternative models for each of five aspects of movement (number, distance from home and types of locations visited; frequency and duration of visits) to interview data from 157 residents of the city of Iquitos, Peru. Comparison of alternative models showed that location type and distance from home were significant determinants of the locations that individuals visited and how much time they spent there. We also found that for most locations, residents of two neighbourhoods displayed indistinguishable preferences for visiting locations at various distances, despite differing distributions of locations around those neighbourhoods. Finally, simulated patterns of time allocation matched the interview data in a number of ways, suggesting that our framework constitutes a sound basis for simulating fine-scale movement and for investigating factors that influence it.