Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Sci Total Environ ; 845: 157286, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35835190

ABSTRACT

Cultural eutrophication is the leading cause of water quality degradation worldwide. The traditional monitoring of eutrophication is time-consuming and not integrative in space and time. Here, we examined the use of carbon (δ13C) and nitrogen (δ15N) isotopic composition to track the degree of eutrophication in a bay of Lake Titicaca impacted by anthropogenic (urban, industrial and agricultural wastewater) discharges. Our results show increasing δ13C and decreasing δ15N signatures in macrophytes and suspended particulate matter with distance to the wastewater source. In contrast to δ15N and δ13C signatures, in-between aquatic plants distributed along the slope were not only affected by anthropogenic discharges but also by the pathway of carbon uptake, i.e., atmospheric (emerged) vs aquatic (submerged). A binary mixing model elaborated from pristine and anthropogenic isotope end-members allowed the assessment of anthropogenically derived C and N incorporation in macrophytes with distance to the source. Higher anthropogenic contribution was observed during the wet season, attributed to enhanced wastewater discharges and leaching of agricultural areas. For both seasons, eutrophication was however found naturally attenuated within 6 to 8 km from the wastewater source. Here, we confirm that carbon and nitrogen stable isotopes are simple, integrative and time-saving tools to evaluate the degree of eutrophication (seasonally or annually) in anthropogenically impacted aquatic ecosystems.


Subject(s)
Lakes , Rivers , Bolivia , Carbon , Carbon Isotopes , Ecosystem , Environmental Monitoring/methods , Eutrophication , Nitrogen/analysis , Nitrogen Isotopes/analysis , Wastewater
2.
Sci Total Environ ; 662: 903-914, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30708305

ABSTRACT

Volcanism is one of the major natural processes emitting mercury (Hg) to the atmosphere, representing a significant component of the global Hg budget. The importance of volcanic eruptions for local-scale Hg deposition was investigated using analyses of Hg, inorganic elemental tracers, and organic biomarkers in a sediment sequence from Lake Chungará (4520 m a.s.l.). Environmental change and Hg deposition in the immediate vicinity of the Parinacota volcano were reconstructed over the last 2700 years, encompassing the pre-anthropogenic and anthropogenic periods. Twenty eruptions delivering large amounts of Hg (1 to 457 µg Hg m-2 yr-1 deposited at the timescale of the event) were locally recorded. Peaks of Hg concentration recorded after most of the eruptions were attributed to a decrease in sedimentation rate together with the rapid re-oxidation of gaseous elemental Hg and deposition with fine particles and incorporation into lake primary producers. Over the study period, the contribution of volcanic emissions has been estimated as 32% of the total Hg input to the lake. Sharp depletions in primary production occurred at each eruption, likely resulting from massive volcaniclastic inputs and changes in the lake-water physico-chemistry. Excluding the volcanic deposition periods, Hg accumulation rates rose from natural background values (1.9 ±â€¯0.5 µg m-2 yr-1) by a factor of 2.3 during the pre-colonial mining period (1400-900 yr cal. BP), and by a factor of 6 and 7.6, respectively, during the Hispanic colonial epoch (400-150 yr cal. BP) and the industrial era (~140 yr cal. BP to present). Altogether, the dataset indicates that lake primary production has been the main, but not limiting, carrier for Hg to the sediment. Volcanic activity and climate change are only secondary drivers of local Hg deposition relative to the magnitude of regional and global anthropogenic emissions.

3.
Environ Sci Technol ; 52(20): 11573-11582, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30222337

ABSTRACT

We used natural mercury (Hg) stable isotopes to investigate the Hg cycle in a rainforest soil catena (French Guiana) partially gold-mined during the early 1950s. Litterfall showed homogeneous Δ199Hg values [-0.18 ± 0.05‰, i.e., a modern gaseous elemental Hg (GEM) isotopic signature]. After litter decomposition, Hg bound to organic matter (OM) is mixed with Hg from pristine (-0.55 ± 0.22‰) or gold-mined (-0.09 ± 0.16‰) mineral materials. Negative Δ199Hg values in deep pristine mineral horizons (-0.60 ± 0.16‰) suggest the transfer of Hg bound to dissolved OM depleted in odd isotopes due to mass-independent fractionation during Hg abiotic reduction. Perennial palm tree leaves collected above gold-mined and pristine soil recorded contrasting Δ199Hg signatures likely resulting from GEM re-emission processes from soils and leaf surfaces. Upslope, soil δ202Hg signatures showed a negative shift (ε ∼ -1‰) with depth attributed to mass-dependent fractionation during Hg sorption and complexation onto iron oxides and dissolved OM. Downslope, higher δ202Hg values in soils resulted from hydromorphy [lower humification, greater Hg(II) reduction, etc.]. The unique Hg isotopic signatures of Amazonian soils probably result in multistep fractionation processes during pedogenesis (millions of years) and in a potentially different Hg isotopic signature of preanthropogenic background GEM.


Subject(s)
Mercury , Soil , Environmental Monitoring , Forests , French Guiana , Gold , Mercury Isotopes , Mining
4.
Mem. Inst. Oswaldo Cruz ; 92(6): 843-52, Nov.-Dec. 1997. ilus, graf
Article in English | LILACS | ID: lil-197226

ABSTRACT

Strategies to construct the physical map of the Trypanosoma cruzi nuclear genome have to capitalize on three main advantage of the parasite genome, namely (a) its small size, (b) the fact that all chromosomes can be defined, and many of them can be isolated by pulse field gel electrophoresis, and (c) the fact that simple Southern blots of electrophoretic karyotypes can be used to map sequence tagged sites and expressed sequence tags to chromosomal bands. A major drawback to cope with is the complexity of T. cruzi genetics, that hinders the construction of a comprehensive genetic map. As a first step towards physical mapping, we report the construction and partial characterization of a T. cruzi CL-Brener genomic library in yeast artificial chromosomes (YACs) that consists of 2.770 individual YACs with a mean insert size of 365 kb encompassing around 10 genomic equivalents. Two libraries in bacterial artificial chromosomes (BACs) have been constructed, BACI and BACII. Both libraries represent about three genome equivalents. A third BAC library (BAC III) is being constructed. YACs and BACs are invaluable tools for physical mapping. More generally, they have to be considered as a common resource for research in Chagas disease.


Subject(s)
Animals , Chromosome Mapping , Genome, Protozoan , Trypanosoma cruzi/genetics , Chromosomes, Artificial, Yeast , Clone Cells , Sequence Tagged Sites
SELECTION OF CITATIONS
SEARCH DETAIL