Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ISME Commun ; 3(1): 50, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37248312

ABSTRACT

Genomic and functional analyses of bacterial sponge symbionts belonging to the uncultivated candidate genus 'Entotheonella' has revealed them as the prolific producers of bioactive compounds previously identified from their invertebrate hosts. These studies also suggested 'Entotheonella' as the first members of a new candidate phylum, 'Tectomicrobia'. Here we analyzed the phylogenetic structure and environmental distribution of this as-yet sparsely populated phylum-like lineage. The data show that 'Entotheonella' and other 'Tectomicrobia' are not restricted to marine habitats but widely distributed among terrestrial locations. The inferred phylogenetic trees suggest several intra-phylum lineages with diverse lifestyles. Of these, the previously described 'Entotheonella' lineage can be more accurately divided into at least three different candidate genera with the terrestrial 'Candidatus Prasianella', the largely terrestrial 'Candidatus Allonella', the 'Candidatus Thalassonella' comprising sponge-associated members, and the more widely distributed 'Candidatus Entotheonella'. Genomic characterization of 'Thalassonella' members from a range of sponge hosts did not suggest a role as providers of natural products, despite high genomic similarity to 'Entotheonella' regarding primary metabolism and implied lifestyle. In contrast, the analysis revealed a correlation between the revised 'Entotheonella' 16S rRNA gene phylogeny and a specific association with sponges and their natural products. This feature might serve as a discovery method to accelerate the identification of new chemically rich 'Entotheonella' variants, and led to the identification of the first 'Entotheonella' symbiont in a non-tetractinellid sponge, Psammocinia sp., indicating a wide host distribution of 'Entotheonella'-based chemical symbiosis.

2.
Nature ; 580(7803): 413-417, 2020 04.
Article in English | MEDLINE | ID: mdl-32296173

ABSTRACT

Intracellular replication of the deadly pathogen Mycobacterium tuberculosis relies on the production of small organic molecules called siderophores that scavenge iron from host proteins1. M. tuberculosis produces two classes of siderophore, lipid-bound mycobactin and water-soluble carboxymycobactin2,3. Functional studies have revealed that iron-loaded carboxymycobactin is imported into the cytoplasm by the ATP binding cassette (ABC) transporter IrtAB4, which features an additional cytoplasmic siderophore interaction domain5. However, the predicted ABC exporter fold of IrtAB is seemingly contradictory to its import function. Here we show that membrane-reconstituted IrtAB is sufficient to import mycobactins, which are then reduced by the siderophore interaction domain to facilitate iron release. Structure determination by X-ray crystallography and cryo-electron microscopy not only confirms that IrtAB has an ABC exporter fold, but also reveals structural peculiarities at the transmembrane region of IrtAB that result in a partially collapsed inward-facing substrate-binding cavity. The siderophore interaction domain is positioned in close proximity to the inner membrane leaflet, enabling the reduction of membrane-inserted mycobactin. Enzymatic ATPase activity and in vivo growth assays show that IrtAB has a preference for mycobactin over carboxymycobactin as its substrate. Our study provides insights into an unusual ABC exporter that evolved as highly specialized siderophore-import machinery in mycobacteria.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Mycobacterium smegmatis/metabolism , Siderophores/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , Models, Molecular , Mycobacterium smegmatis/chemistry , Mycobacterium smegmatis/genetics , Protein Structure, Quaternary , Protein Structure, Tertiary
3.
Nat Chem ; 11(10): 931-939, 2019 10.
Article in English | MEDLINE | ID: mdl-31501509

ABSTRACT

The polytheonamides are among the most complex and biosynthetically distinctive natural products known to date. These potent peptide cytotoxins are derived from a ribosomal precursor processed by 49 mostly non-canonical posttranslational modifications. As the producer is a 'microbial dark matter' bacterium only distantly related to any cultivated organism, >70-step chemical syntheses have been developed to access these unique compounds. Here, we mined prokaryotic diversity to establish a synthetic platform based on the new host Microvirgula aerodenitrificans that produces hypermodified peptides within two days. Using this system, we generated the aeronamides, new polytheonamide-type compounds with near-picomolar cytotoxicity. Aeronamides, as well as the polygeonamides produced from deep-rock biosphere DNA, contain the highest numbers of D-amino acids in known biomolecules. With increasing bacterial genomes being sequenced, similar host mining strategies might become feasible to access further elusive natural products from uncultivated life.


Subject(s)
Amides/metabolism , Biological Products/metabolism , Peptides/genetics , Peptides/metabolism , Amides/chemistry , Betaproteobacteria/chemistry , Betaproteobacteria/metabolism , Biological Products/chemistry , Peptides/chemistry , Synthetic Biology
4.
Prog Mol Subcell Biol ; 55: 291-314, 2017.
Article in English | MEDLINE | ID: mdl-28238042

ABSTRACT

Marine sponges belong to the oldest animals existing today. Apart from their role in recycling of carbon and nitrogen in the ocean, they are also an important source of a wide variety of structurally diverse bioactive natural products. Over the past few decades, a multitude of compounds from sponges have been discovered exhibiting diverse, pharmacologically promising activities. However, in many cases the low substance quantities present in the sponge tissue would require the collection of large amounts of sponge material, thus impeding further drug development. Recent research has focused on understanding natural product biosynthesis in sponges and on investigating symbiotic bacteria as possible production sources in order to develop sustainable production systems. This chapter covers research efforts that have taken place over the past few years involving the identification of 'Entotheonella' symbionts responsible for production of sponge compounds, as well as the elucidation of their biosynthetic routes, highlighting future biotechnological applications.


Subject(s)
Biological Products/chemistry , Biological Products/therapeutic use , Cyanobacteria/chemistry , Drug Design , Porifera/microbiology , Technology, Pharmaceutical/trends , Animals , Aquatic Organisms/chemistry , Aquatic Organisms/microbiology , Biotechnology/trends , Industrial Microbiology/trends
5.
Nat Chem Biol ; 11(9): 705-12, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26236936

ABSTRACT

Actin-targeting macrolides comprise a large, structurally diverse group of cytotoxins isolated from remarkably dissimilar micro- and macroorganisms. In spite of their disparate origins and structures, many of these compounds bind actin at the same site and exhibit structural relationships reminiscent of modular, combinatorial drug libraries. Here we investigate biosynthesis and evolution of three compound groups: misakinolides, scytophycin-type compounds and luminaolides. For misakinolides from the sponge Theonella swinhoei WA, our data suggest production by an uncultivated 'Entotheonella' symbiont, further supporting the relevance of these bacteria as sources of bioactive polyketides and peptides in sponges. Insights into misakinolide biosynthesis permitted targeted genome mining for other members, providing a cyanobacterial luminaolide producer as the first cultivated source for this dimeric compound family. The data indicate that this polyketide family is bacteria-derived and that the unusual macrolide diversity is the result of combinatorial pathway modularity for some compounds and of convergent evolution for others.


Subject(s)
Actins/metabolism , Biological Evolution , Cyanobacteria/metabolism , Deltaproteobacteria/metabolism , Polyketides/metabolism , Actins/chemistry , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Cyanobacteria/genetics , Deltaproteobacteria/genetics , Gene Expression , Macrolides/chemistry , Macrolides/metabolism , Molecular Sequence Data , Multigene Family , Peptides , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketides/chemistry , Protein Binding , Pyrans/chemistry , Pyrans/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Symbiosis , Theonella/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...