Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 1911, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115587

ABSTRACT

Many critical advances in research utilize techniques that combine high-resolution with high-content characterization at the single cell level. We introduce the MICS (MACSima Imaging Cyclic Staining) technology, which enables the immunofluorescent imaging of hundreds of protein targets across a single specimen at subcellular resolution. MICS is based on cycles of staining, imaging, and erasure, using photobleaching of fluorescent labels of recombinant antibodies (REAfinity Antibodies), or release of antibodies (REAlease Antibodies) or their labels (REAdye_lease Antibodies). Multimarker analysis can identify potential targets for immune therapy against solid tumors. With MICS we analysed human glioblastoma, ovarian and pancreatic carcinoma, and 16 healthy tissues, identifying the pair EPCAM/THY1 as a potential target for chimeric antigen receptor (CAR) T cell therapy for ovarian carcinoma. Using an Adapter CAR T cell approach, we show selective killing of cells only if both markers are expressed. MICS represents a new high-content microscopy methodology widely applicable for personalized medicine.


Subject(s)
Biomarkers, Tumor/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Fluorescent Antibody Technique , Immunotherapy, Adoptive , Neoplasms/metabolism , Neoplasms/therapy , Photobleaching , Single-Cell Analysis , Thy-1 Antigens/metabolism , Cell Death , Cytotoxicity, Immunologic , High-Throughput Screening Assays , Humans , Neoplasms/immunology , Neoplasms/pathology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
2.
Clin Chem ; 51(10): 1923-32, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16055433

ABSTRACT

BACKGROUND: Use of microfluidics in point-of-care testing (POCT) will require on-board fluidics, self-contained reagents, and multistep reactions, all at a low cost. Disposable microchips were studied as a potential POCT platform. METHODS: Micron-sized structures and capillaries were embedded in disposable plastics with mechanisms for fluidic control, metering, specimen application, separation, and mixing of nanoliter to microliter volumes. Designs allowed dry reagents to be on separate substrates and liquid reagents to be added. Control of surface energy to +/-5 dyne/cm2 and mechanical tolerances to < or = 1 microm were used to control flow propulsion into adsorptive, chromatographic, and capillary zones. Fluidic mechanisms were combined into working examples for urinalysis, blood glucose, and hemoglobin A(1c) testing using indicators (substances that react with analyte, such as dyes, enzyme substrates, and diazonium salts), catalytic reactions, and antibodies as recognition components. Optical signal generation characterized fluid flow and allowed detection. RESULTS: We produced chips that included capillary geometries from 10 to 200 microm with geometries for stopping and starting the flow of blood, urine, or buffer; vented chambers for metering and splitting 100 nL to 30 microL; specimen inlets for bubble-free specimen entry and containment; capillary manifolds for mixing; microstructure interfaces for homogeneous transfer into separation membranes; miniaturized containers for liquid storage and release; and moisture vapor barrier seals for easy use. Serum was separated from whole blood in <10 s. Miniaturization benefits were obtained at 10-200 microm. CONCLUSION: Disposable microchip technology is compatible with conventional dry-reagent technology and allows a highly compact system for complex assay sequences with minimum manual manipulations and simple operation.


Subject(s)
Glycated Hemoglobin/analysis , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Microfluidics/instrumentation , Microfluidics/methods , Blood Glucose/analysis , Equipment Design , Humans , Immunoassay/instrumentation , Point-of-Care Systems , Sensitivity and Specificity , Surface Properties , Urinalysis/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL