Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 1106, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32107379

ABSTRACT

Section Flavi encompasses both harmful and beneficial Aspergillus species, such as Aspergillus oryzae, used in food fermentation and enzyme production, and Aspergillus flavus, food spoiler and mycotoxin producer. Here, we sequence 19 genomes spanning section Flavi and compare 31 fungal genomes including 23 Flavi species. We reassess their phylogenetic relationships and show that the closest relative of A. oryzae is not A. flavus, but A. minisclerotigenes or A. aflatoxiformans and identify high genome diversity, especially in sub-telomeric regions. We predict abundant CAZymes (598 per species) and prolific secondary metabolite gene clusters (73 per species) in section Flavi. However, the observed phenotypes (growth characteristics, polysaccharide degradation) do not necessarily correlate with inferences made from the predicted CAZyme content. Our work, including genomic analyses, phenotypic assays, and identification of secondary metabolites, highlights the genetic and metabolic diversity within section Flavi.


Subject(s)
Aspergillus flavus/genetics , Aspergillus oryzae/genetics , Genome, Fungal/genetics , Genomics , Aspergillus flavus/classification , Aspergillus flavus/enzymology , Aspergillus oryzae/classification , Aspergillus oryzae/enzymology , Bioreactors , Carbohydrate Metabolism/genetics , Crops, Agricultural/microbiology , DNA, Fungal/genetics , Fermentation , Fermented Foods , Fungal Proteins/genetics , Fungal Proteins/metabolism , Metabolic Networks and Pathways/genetics , Multigene Family , Phenotype , Phylogeny , Plant Diseases/prevention & control , Secondary Metabolism/genetics
2.
New Phytol ; 226(3): 770-784, 2020 05.
Article in English | MEDLINE | ID: mdl-31880817

ABSTRACT

Pathogenic fungi often target the plant plasma membrane (PM) H+ -ATPase during infection. To identify pathogenic compounds targeting plant H+ -ATPases, we screened extracts from 10 Stemphylium species for their effect on H+ -ATPase activity. We identified Stemphylium loti extracts as potential H+ -ATPase inhibitors, and through chemical separation and analysis, tenuazonic acid (TeA) as a potent H+ -ATPase inhibitor. By assaying ATP hydrolysis and H+ pumping, we confirmed TeA as a H+ -ATPase inhibitor both in vitro and in vivo. To visualize in planta inhibition of the H+ -ATPase, we treated pH-sensing Arabidopsis thaliana seedlings with TeA and quantified apoplastic alkalization. TeA affected both ATPase hydrolysis and H+ pumping, supporting a direct effect on the H+ -ATPase. We demonstrated apoplastic alkalization of A. thaliana seedlings after short-term TeA treatment, indicating that TeA effectively inhibits plant PM H+ -ATPase in planta. TeA-induced inhibition was highly dependent on the regulatory C-terminal domain of the plant H+ -ATPase. Stemphylium loti is a phytopathogenic fungus. Inhibiting the plant PM H+ -ATPase results in membrane potential depolarization and eventually necrosis. The corresponding fungal H+ -ATPase, PMA1, is less affected by TeA when comparing native preparations. Fungi are thus able to target an essential plant enzyme without causing self-toxicity.


Subject(s)
Arabidopsis , Tenuazonic Acid , Arabidopsis/metabolism , Ascomycota , Cell Membrane/metabolism , Proton-Translocating ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...