Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
2.
Front Vet Sci ; 11: 1392504, 2024.
Article in English | MEDLINE | ID: mdl-39144083

ABSTRACT

Significance: Many commercially available near-infrared (NIR) fluorescence imaging systems lack algorithms for real-time quantifiable fluorescence data. Creation of a workflow for clinical assessment and post hoc analysis may provide clinical researchers with a method for intraoperative fluorescence quantification to improve objective outcome measures. Aim: Scoring systems and verified image analysis are employed to determine the amount and intensity of fluorescence within surgical specimens both intra and postoperatively. Approach: Lymph nodes from canine cancer patients were obtained during lymph node extirpation following peritumoral injection of indocyanine green (ICG). First, a semi-quantitative assessment of surface fluorescence was evaluated. Images obtained with a NIR exoscope were analysed to determine fluorescence thresholds and measure fluorescence amount and intensity. Results: Post hoc fluorescence quantification (threshold of Hue = 165-180, Intensity = 30-255) displayed strong agreement with semi-quantitative scoring (k = 0.9734, p < 0.0001). Fluorescence intensity with either threshold of 35-255 or 45-255 were significant predictors of fluorescence and had high sensitivity and specificity (p < 0.05). Fluorescence intensity and quantification had a strong association (p < 0.001). Conclusion: The validation of the semi-quantitative scoring system by image analysis provides a method for objective in situ observation of tissue fluorescence. The utilization of thresholding for ICG fluorescence intensity allows post hoc quantification of fluorescence when not built into the imaging system.

3.
PLoS One ; 19(7): e0307178, 2024.
Article in English | MEDLINE | ID: mdl-39028700

ABSTRACT

Women diagnosed with ovarian cancer frequently have a poor prognosis as their cancer is often diagnosed at more advanced stages when the cancer has metastasized. At this point surgery cannot remove all the tumor cells and while ovarian cancer cells often initially respond to chemotherapeutic agents like carboplatin and paclitaxel, resistance to these agents frequently occurs. Thus, novel therapies are required for the treatment of advanced stage ovarian cancer. One therapeutic option being explored is the regulation of non-coding RNAs such as microRNAs. An advantage of microRNAs is that they can regulate tens, hundreds and sometimes thousands of mRNAs in cells and thus may be more effective than chemotherapeutic agents or targeted therapies. To investigate the therapeutic potential of miR-200s in ovarian cancer, lentiviral vectors were used to overexpress both miR-200 clusters in two murine ovarian cancer cell lines, ID8 and 28-2. Overexpression of miR-200s reduced the expression of several mesenchymal genes and proteins, significantly inhibited proliferation as assessed by BrdU flow cytometry and significantly reduced invasion through Matrigel coated transwell inserts in both cell lines. Overexpression of miR-200s also increased basal apoptosis approximately 3-fold in both cell lines as determined by annexin V flow cytometry. Pathway analysis of RNA sequencing of control and miR-200 overexpressing ovarian cancer cells revealed that genes regulated by miR-200s were involved in processes like epithelial mesenchymal transition (EMT) and cell migration. Therefore, miR-200s can inhibit proliferation and increase apoptosis while suppressing tumor cell invasion and thus simultaneously target three key cancer pathways.


Subject(s)
Apoptosis , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasm Invasiveness , Ovarian Neoplasms , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Animals , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Mice , Cell Line, Tumor , Humans , Cell Movement/genetics
4.
Curr Oncol ; 31(7): 3826-3844, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39057155

ABSTRACT

The tumor microenvironment (TME) in ovarian cancer (OC) has much greater complexity than previously understood. In response to aggressive pro-angiogenic stimulus, blood vessels form rapidly and are dysfunctional, resulting in poor perfusion, tissue hypoxia, and leakiness, which leads to increased interstitial fluid pressure (IFP). Decreased perfusion and high IFP significantly inhibit the uptake of therapies into the tumor. Within the TME, there are numerous inhibitor cells, such as myeloid-derived suppressor cells (MDSCs), tumor association macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs) that secrete high numbers of immunosuppressive cytokines. This immunosuppressive environment is thought to contribute to the lack of success of immunotherapies such as immune checkpoint inhibitor (ICI) treatment. This review discusses the components of the TME in OC, how these characteristics impede therapeutic efficacy, and some strategies to alleviate this inhibition.


Subject(s)
Ovarian Neoplasms , Tumor Microenvironment , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Female , Immunotherapy/methods
5.
Am J Pathol ; 194(10): 1823-1843, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032600

ABSTRACT

Muscle atrophy and weakness are prevalent features of cancer. Although extensive research has characterized skeletal muscle wasting in cancer cachexia, limited studies have investigated how cardiac structure and function are affected by therapy-naive cancer. Herein, orthotopic, syngeneic models of epithelial ovarian cancer and pancreatic ductal adenocarcinoma, and a patient-derived pancreatic xenograft model, were used to define the impact of malignancy on cardiac structure, function, and metabolism. Tumor-bearing mice developed cardiac atrophy and intrinsic systolic and diastolic dysfunction, with arterial hypotension and exercise intolerance. In hearts of ovarian tumor-bearing mice, fatty acid-supported mitochondrial respiration decreased, and carbohydrate-supported respiration increased-showcasing a substrate shift in cardiac metabolism that is characteristic of heart failure. Epithelial ovarian cancer decreased cytoskeletal and cardioprotective gene expression, which was paralleled by down-regulation of transcription factors that regulate cardiomyocyte size and function. Patient-derived pancreatic xenograft tumor-bearing mice show altered myosin heavy chain isoform expression-also a molecular phenotype of heart failure. Markers of autophagy and ubiquitin-proteasome system were upregulated by cancer, providing evidence of catabolic signaling that promotes cardiac wasting. Together, two cancer types were used to cross-validate evidence of the structural, functional, and metabolic cancer-induced cardiomyopathy, thus providing translational evidence that could impact future medical management strategies for improved cancer recovery in patients.


Subject(s)
Cardiomyopathies , Phenotype , Animals , Humans , Mice , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/etiology , Female , Atrophy/pathology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/complications , Cachexia/metabolism , Cachexia/pathology , Cachexia/etiology , Myocardium/metabolism , Myocardium/pathology
6.
Mol Metab ; 86: 101976, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925248

ABSTRACT

OBJECTIVES: A high proportion of women with advanced epithelial ovarian cancer (EOC) experience weakness and cachexia. This relationship is associated with increased morbidity and mortality. EOC is the most lethal gynecological cancer, yet no preclinical cachexia model has demonstrated the combined hallmark features of metastasis, ascites development, muscle loss and weakness in adult immunocompetent mice. METHODS: Here, we evaluated a new model of ovarian cancer-induced cachexia with the advantages of inducing cancer in adult immunocompetent C57BL/6J mice through orthotopic injections of EOC cells in the ovarian bursa. We characterized the development of metastasis, ascites, muscle atrophy, muscle weakness, markers of inflammation, and mitochondrial stress in the tibialis anterior (TA) and diaphragm ∼45, ∼75 and ∼90 days after EOC injection. RESULTS: Primary ovarian tumour sizes were progressively larger at each time point while severe metastasis, ascites development, and reductions in body, fat and muscle weights occurred by 90 Days. There were no changes in certain inflammatory (TNFα), atrogene (MURF1 and Atrogin) or GDF15 markers within both muscles whereas IL-6 was increased at 45 and 90 Day groups in the diaphragm. TA weakness in 45 Day preceded atrophy and metastasis that were observed later (75 and 90 Day, respectively). The diaphragm demonstrated both weakness and atrophy in 45 Day. In both muscles, this pre-severe-metastatic muscle weakness corresponded with considerable reprogramming of gene pathways related to mitochondrial bioenergetics as well as reduced functional measures of mitochondrial pyruvate oxidation and creatine-dependent ADP/ATP cycling as well as increased reactive oxygen species emission (hydrogen peroxide). Remarkably, muscle force per unit mass at 90 days was partially restored in the TA despite the presence of atrophy and severe metastasis. In contrast, the diaphragm demonstrated progressive weakness. At this advanced stage, mitochondrial pyruvate oxidation in both muscles exceeded control mice suggesting an apparent metabolic super-compensation corresponding with restored indices of creatine-dependent adenylate cycling. CONCLUSIONS: This mouse model demonstrates the concurrent development of cachexia and metastasis that occurs in women with EOC. The model provides physiologically relevant advantages of inducing tumour development within the ovarian bursa in immunocompetent adult mice. Moreover, the model reveals that muscle weakness in both TA and diaphragm precedes severe metastasis while weakness also precedes atrophy in the TA. An underlying mitochondrial bioenergetic stress corresponded with this early weakness. Collectively, these discoveries can direct new research towards the development of therapies that target pre-atrophy and pre-severe-metastatic weakness during EOC in addition to therapies targeting cachexia.


Subject(s)
Cachexia , Disease Models, Animal , Mice, Inbred C57BL , Mitochondria , Muscle Weakness , Ovarian Neoplasms , Animals , Cachexia/metabolism , Cachexia/etiology , Cachexia/pathology , Female , Mice , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/complications , Muscle Weakness/metabolism , Muscle Weakness/etiology , Mitochondria/metabolism , Mitochondria/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Neoplasm Metastasis , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor
7.
Pathol Res Pract ; 259: 155370, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815507

ABSTRACT

Cancer is a significant global health issue that poses a considerable burden on both patients and healthcare systems. Many different types of cancers exist that often require unique treatment approaches and therapies. A hallmark of tumor progression is the creation of an immunosuppressive environment, which poses complex challenges for current treatments. Amongst the most explored characteristics is a hypoxic environment, high interstitial pressure, and immunosuppressive cells and cytokines. Traditional cancer treatments involve radiotherapy, chemotherapy, and surgical procedures. The advent of immunotherapies was regarded as a promising approach with hopes of greatly increasing patients' survival and outcome. Although some success is seen with various immunotherapies, the vast majority of monotherapies are unsuccessful. This review examines how various aspects of the tumor microenvironment (TME) present challenges that impede the success of immunotherapies. Subsequently, we review strategies to manipulate the TME to facilitate the success of immunotherapies.


Subject(s)
Immunotherapy , Pancreatic Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Immunotherapy/methods , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Animals
8.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38645227

ABSTRACT

Objectives: A high proportion of women with advanced epithelial ovarian cancer (EOC) experience weakness and cachexia. This relationship is associated with increased morbidity and mortality. EOC is the most lethal gynecological cancer, yet no preclinical cachexia model has demonstrated the combined hallmark features of metastasis, ascites development, muscle loss and weakness in adult immunocompetent mice. Methods: Here, we evaluated a new model of ovarian cancer-induced cachexia with the advantages of inducing cancer in adult immunocompetent C57BL/6J mice through orthotopic injections of EOC cells in the ovarian bursa. We characterized the development of metastasis, ascites, muscle atrophy, muscle weakness, markers of inflammation, and mitochondrial stress in the tibialis anterior (TA) and diaphragm ~45, ~75 and ~90 days after EOC injection. Results: Primary ovarian tumour sizes were progressively larger at each time point while robust metastasis, ascites development, and reductions in body, fat and muscle weights occurred by 90 Days. There were no changes in certain inflammatory (TNFα), atrogene (MURF1 and Atrogin) or GDF15 markers within both muscles whereas IL-6 was increased at 45 and 90 Day groups in the diaphragm. TA weakness in 45 Day preceded atrophy and metastasis that were observed later (75 and 90 Day, respectively). The diaphragm demonstrated both weakness and atrophy in 45 Day. In both muscles, this pre-metastatic muscle weakness corresponded with considerable reprogramming of gene pathways related to mitochondrial bioenergetics as well as reduced functional measures of mitochondrial pyruvate oxidation and creatine-dependent ADP/ATP cycling as well as increased reactive oxygen species emission (hydrogen peroxide). Remarkably, muscle force per unit mass at 90 days was partially restored in the TA despite the presence of atrophy and metastasis. In contrast, the diaphragm demonstrated progressive weakness. At this advanced stage, mitochondrial pyruvate oxidation in both muscles exceeded control mice suggesting an apparent metabolic super-compensation corresponding with restored indices of creatine-dependent adenylate cycling. Conclusion: This mouse model demonstrates the concurrent development of cachexia and metastasis that occurs in women with EOC. The model provides physiologically relevant advantages of inducing tumour development within the ovarian bursa in immunocompetent adult mice. Moreover, the model reveals that muscle weakness in both TA and diaphragm precedes metastasis while weakness also precedes atrophy in the TA. An underlying mitochondrial bioenergetic stress corresponded with this early weakness. Collectively, these discoveries can direct new research towards the development of therapies that target pre-atrophy and pre-metastatic weakness during EOC in addition to therapies targeting cachexia.

9.
Am J Physiol Heart Circ Physiol ; 326(6): H1515-H1537, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38639740

ABSTRACT

Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on the cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Furthermore, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in patients with cancer lead to long-term morbidity and poor quality of life in this patient population, even when patients are cancer-free. Evidence from patients with cancer and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiological and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called "reverse cardio-oncology," where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.


Subject(s)
Cardiotoxicity , Cardiovascular Diseases , Neoplasms , Humans , Cardiovascular Diseases/etiology , Neoplasms/complications , Neoplasms/drug therapy , Animals , Antineoplastic Agents/adverse effects , Risk Factors , Cardio-Oncology
10.
J Ovarian Res ; 16(1): 218, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986175

ABSTRACT

High-grade serous carcinoma (HGSC) is the most common and aggressive subtype of epithelial ovarian cancer, characterized by gain-of-function TP53 mutations originating in the fallopian tube epithelium. Therapeutic intervention occurs at advanced metastatic disease, due to challenges in early-stage diagnosis, with common disease recurrence and therapy resistance despite initial therapy success. The mevalonate pathway is exploited by many cancers and is potently inhibited by statin drugs. Statins have shown anti-cancer activity in many, but not all cancers. Here, we investigated the role of p53 status in relation to mevalonate pathway signaling in murine oviductal epithelial (OVE) cells and identified OVE cell sensitivity to statin inhibition. We found that p53R175H mutant and Trp53 knockout OVE cells have increased mevalonate pathway signaling compared to p53 wild-type OVE cells. Through orthotopic implantation to replicate the fallopian tube origin of HGSC, p53R175H mutant cells upregulated the mevalonate pathway to drive progression to advanced-stage ovarian cancer, and simvastatin treatment abrogated this effect. Additionally, simvastatin was more efficacious at inhibiting cell metabolic activity in OVE cells than atorvastatin, rosuvastatin and pravastatin. In vitro, simvastatin demonstrated potent effects on cell proliferation, apoptosis, invasion and migration in OVE cells regardless of p53 status. In vivo, simvastatin induced ovarian cancer disease regression through decreased primary ovarian tumor weight and increased apoptosis. Simvastatin also significantly increased cytoplasmic localization of HMG-CoA reductase in ovarian tumors. Downstream of the mevalonate pathway, simvastatin had no effect on YAP or small GTPase activity. This study suggests that simvastatin can induce anti-tumor effects and could be an important inhibitor of ovarian cancer progression.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Ovarian Neoplasms , Female , Mice , Animals , Humans , Fallopian Tubes/metabolism , Simvastatin/pharmacology , Simvastatin/metabolism , Simvastatin/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Mevalonic Acid/metabolism , Mevalonic Acid/therapeutic use , Epithelial Cells/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/pathology
11.
Reprod Biol Endocrinol ; 21(1): 75, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612696

ABSTRACT

OBJECTIVE: To systematically identify and narratively synthesize the evidence surrounding liposomal delivery of gene therapy and the outcome for ovarian cancer. METHODS: An electronic database search of the Embase, MEDLINE and Web of Science from inception until July 7, 2023, was conducted to identify primary studies that investigated the effect of liposomal delivery of gene therapy on ovarian cancer outcomes. Retrieved studies were assessed against the eligibility criteria for inclusion. RESULTS: The search yielded 564 studies, of which 75 met the inclusion criteria. Four major types of liposomes were identified: cationic, neutral, polymer-coated, and ligand-targeted liposomes. The liposome with the most evidence involved cationic liposomes which are characterized by their positively charged phospholipids (n = 37, 49.3%). Similarly, those with neutrally charged phospholipids, such as 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, were highly researched as well (n = 25, 33.3%). Eight areas of gene therapy research were identified, evaluating either target proteins/transcripts or molecular pathways: microRNAs, ephrin type-A receptor 2 (EphA2), interleukins, mitogen-activated protein kinase (MAPK), human-telomerase reverse transcriptase/E1A (hTERT/EA1), suicide gene, p53, and multidrug resistance mutation 1 (MDR1). CONCLUSION: Liposomal delivery of gene therapy for ovarian cancer shows promise in many in vivo studies. Emerging polymer-coated and ligand-targeted liposomes have been gaining interest as they have been shown to have more stability and specificity. We found that gene therapy involving microRNAs was the most frequently studied. Overall, liposomal genetic therapy has been shown to reduce tumor size and weight and improve survivability. More research involving the delivery and targets of gene therapy for ovarian cancer may be a promising avenue to improve patient outcomes.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , Liposomes , Ligands , Phospholipids , Genetic Therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy
12.
Cancers (Basel) ; 14(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35884561

ABSTRACT

Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway's rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins' lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.

13.
Biol Reprod ; 107(2): 574-589, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35377412

ABSTRACT

Paternal obesity predisposes offspring to metabolic dysfunction, but the underlying mechanisms remain unclear. We investigated whether this metabolic dysfunction is associated with changes in placental vascular development and is fueled by endoplasmic reticulum (ER) stress-mediated changes in fetal hepatic development. We also determined whether paternal obesity indirectly affects the in utero environment by disrupting maternal metabolic adaptations to pregnancy. Male mice fed a standard chow or high fat diet (60%kcal fat) for 8-10 weeks were time-mated with female mice to generate pregnancies and offspring. Glucose tolerance was evaluated in dams at mid-gestation (embryonic day (E) 14.5) and late gestation (E18.5). Hypoxia, angiogenesis, endocrine function, macronutrient transport, and ER stress markers were evaluated in E14.5 and E18.5 placentae and/or fetal livers. Maternal glucose tolerance was assessed at E14.5 and E18.5. Metabolic parameters were assessed in offspring at ~60 days of age. Paternal obesity did not alter maternal glucose tolerance but induced placental hypoxia and altered placental angiogenic markers, with the most pronounced effects in female placentae. Paternal obesity increased ER stress-related protein levels (ATF6 and PERK) in the fetal liver and altered hepatic expression of gluconeogenic factors at E18.5. Offspring of obese fathers were glucose intolerant and had impaired whole-body energy metabolism, with more pronounced effects in female offspring. Metabolic deficits in offspring due to paternal obesity may be mediated by sex-specific changes in placental vessel structure and integrity that contribute to placental hypoxia and may lead to poor fetal oxygenation and impairments in fetal metabolic signaling pathways in the liver.


Subject(s)
Obesity , Placenta , Animals , Diet, High-Fat/adverse effects , Fathers , Female , Glucose/metabolism , Humans , Hypoxia/metabolism , Male , Mice , Obesity/metabolism , Placenta/metabolism , Placentation , Pregnancy
14.
Gynecol Oncol ; 164(1): 154-169, 2022 01.
Article in English | MEDLINE | ID: mdl-34799137

ABSTRACT

OBJECTIVES: Tumor vasculature is structurally abnormal, with anatomical deformities, reduced pericyte coverage and low tissue perfusion. As a result of this vascular dysfunction, tumors are often hypoxic, which is associated with an aggressive tumor phenotype, and reduced delivery of therapeutic compounds to the tumor. We have previously shown that a peptide containing the thrombospondin-1 type I repeats (3TSR) specifically targets tumor vessels and induces vascular normalization in a mouse model of epithelial ovarian cancer (EOC). However, due to its small size, 3TSR is rapidly cleared from circulation. We now introduce a novel construct with the 3TSR peptide fused to the C-terminus of each of the two heavy chains of the Fc region of human IgG1 (Fc3TSR). We hypothesize that Fc3TSR will have greater anti-tumor activity in vitro and in vivo compared to the native compound. METHODS: Fc3TSR was evaluated in vitro using proliferation and apoptosis assays to investigate differences in efficacy compared to native 3TSR. In light of the multivalency of Fc3TSR, we also investigate whether it induces greater clustering of its functional receptor, CD36. We also compare the compounds in vivo using an orthotopic, syngeneic mouse model of advanced stage EOC. The impact of the two compounds on changes to tumor vasculature morphology was also investigated. RESULTS: Fc3TSR significantly decreased the viability and proliferative potential of EOC cells and endothelial cells in vitro compared to native 3TSR. High-resolution imaging followed by image correlation spectroscopy demonstrated enhanced clustering of the CD36 receptor in cells treated with Fc3TSR. This was associated with enhanced downstream signaling and greater in vitro and in vivo cellular responses. Fc3TSR induced greater vascular normalization and disease regression compared to native 3TSR in an orthotopic, syngeneic mouse model of advanced stage ovarian cancer. CONCLUSION: The development of Fc3TSR which is greater in size, stable in circulation and enhances receptor activation compared to 3TSR, facilitates its translational potential as a therapy in the treatment of metastatic advanced stage ovarian cancer.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Immunoglobulin G/therapeutic use , Ovarian Neoplasms/drug therapy , Thrombospondin 1/therapeutic use , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/pharmacology , Animals , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor/drug effects , Disease Models, Animal , Female , Humans , Immunoglobulin G/pharmacology , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic , Ovarian Neoplasms/pathology , Thrombospondin 1/pharmacokinetics , Thrombospondin 1/pharmacology
15.
Front Endocrinol (Lausanne) ; 12: 772349, 2021.
Article in English | MEDLINE | ID: mdl-34867818

ABSTRACT

Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.


Subject(s)
Carcinoma, Ovarian Epithelial/therapy , Ovarian Neoplasms/therapy , Tumor Hypoxia/physiology , Tumor Microenvironment/physiology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Female , Humans , Immunotherapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology
16.
Front Vet Sci ; 8: 758295, 2021.
Article in English | MEDLINE | ID: mdl-34746290

ABSTRACT

Background: To develop a digital algorithm for quantitative assessment of surface methylene blue staining in whole lymph nodes and validate a semi-quantitative visual scoring method for patient-side use. Methods: Lymph nodes from canine patients with spontaneous tumors undergoing sentinel lymph node mapping were prospectively assessed ex vivo and photographed. Using an open-source computer-based imaging software, an algorithm was developed for quantification of staining based on a signal-to-background ratio. Next, two blinded observers evaluated images and assigned a semi-quantitative visual score based on surface staining (0-no blue stain, 1-1-50% stained, and 2-51-100% stained) and those results were compared to the established quantitative standard. Results: Forty-three lymph nodes were included. Image analysis successfully quantified blue staining and differentiated from normal lymph node tissue in all cases. Agreement between observers using the Kappa coefficient demonstrated strong agreement (k = 0.8581, p < 0.0001) between semi-quantitative visual scoring and image analysis. There was substantial interobserver and intraobserver agreement for the scoring system (k = 0.7340, p < 0.0001 and k = 0.8983, p < 0.0001, respectively). Conclusion: A digital algorithm using an open-source software was simple and straightforward to use for quantification of blue staining. The use of a semi-quantitative visual scoring system shows promise for a simple, objective, repeatable assessment of methylene blue staining at the time of surgery. This study demonstrates reliable and repeatable methods for blue staining quantification thereby providing a novel and objective reporting mechanism in scientific research involving sentinel lymph node mapping.

17.
Cancers (Basel) ; 13(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34503254

ABSTRACT

A basic requirement of tumorigenesis is the development of a vascular network to support the metabolic requirements of tumor growth and metastasis. Tumor vascular formation is regulated by a balance between promoters and inhibitors of angiogenesis. Typically, the pro-angiogenic environment created by the tumor is extremely aggressive, resulting in the rapid vessel formation with abnormal, dysfunctional morphology. The altered morphology and function of tumor blood and lymphatic vessels has numerous implications including poor perfusion, tissue hypoxia, and reduced therapy uptake. Targeting tumor angiogenesis as a therapeutic approach has been pursued in a host of different cancers. Although some preclinical success was seen, there has been a general lack of clinical success with traditional anti-angiogenic therapeutics as single agents. Typically, following anti-angiogenic therapy, there is remodeling of the tumor microenvironment and widespread tumor hypoxia, which is associated with development of therapy resistance. A more comprehensive understanding of the biology of tumor angiogenesis and insights into new clinical approaches, including combinations with immunotherapy, are needed to advance vascular targeting as a therapeutic area.

18.
Front Cell Dev Biol ; 9: 664696, 2021.
Article in English | MEDLINE | ID: mdl-33869231

ABSTRACT

The thrombospondins (TSPs) are a family of multimeric extracellular matrix proteins that dynamically regulate cellular behavior and response to stimuli. In so doing, the TSPs directly and indirectly affect biological processes such as embryonic development, wound healing, immune response, angiogenesis, and cancer progression. Many of the direct effects of Thrombospondin 1 (TSP-1) result from the engagement of a wide range of cell surface receptors including syndecans, low density lipoprotein receptor-related protein 1 (LRP1), CD36, integrins, and CD47. Different or even opposing outcomes of TSP-1 actions in certain pathologic contexts may occur, depending on the structural/functional domain involved. To expedite response to external stimuli, these receptors, along with vascular endothelial growth factor receptor 2 (VEGFR2) and Src family kinases, are present in specific membrane microdomains, such as lipid rafts or tetraspanin-enriched microdomains. The molecular organization of these membrane microdomains and their constituents is modulated by TSP-1. In this review, we will describe how the presence of TSP-1 at the plasma membrane affects endothelial cell signal transduction and angiogenesis.

19.
Sci Rep ; 9(1): 17621, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772245

ABSTRACT

We investigated whether diet-induced changes in the maternal intestinal microbiota were associated with changes in bacterial metabolites and their receptors, intestinal inflammation, and placental inflammation at mid-gestation (E14.5) in female mice fed a control (17% kcal fat, n = 7) or a high-fat diet (HFD 60% kcal fat, n = 9; ad libitum) before and during pregnancy. Maternal diet-induced obesity (mDIO) resulted in a reduction in maternal fecal short-chain fatty acid producing Lachnospiraceae, lower cecal butyrate, intestinal antimicrobial peptide levels, and intestinal SCFA receptor Ffar3, Ffar2 and Hcar2 transcript levels. mDIO increased maternal intestinal pro-inflammatory NFκB activity, colonic CD3+ T cell number, and placental inflammation. Maternal obesity was associated with placental hypoxia, increased angiogenesis, and increased transcript levels of glucose and amino acid transporters. Maternal and fetal markers of gluconeogenic capacity were decreased in pregnancies complicated by obesity. We show that mDIO impairs bacterial metabolite signaling pathways in the mother at mid-gestation, which was associated with significant structural changes in placental blood vessels, likely as a result of placental hypoxia. It is likely that maternal intestinal changes contribute to adverse maternal and placental adaptations that, via alterations in fetal hepatic glucose handling, may impart increased risk of metabolic dysfunction in offspring.


Subject(s)
Diet, High-Fat/adverse effects , Fetus/metabolism , Glucose/metabolism , Intestines/pathology , Obesity/metabolism , Placenta/metabolism , Pregnancy Complications/metabolism , Animals , Butyrates/metabolism , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Cell Hypoxia , Cytokines/metabolism , Fatty Acids, Volatile/analysis , Feces/chemistry , Female , Gastrointestinal Microbiome , Gene Expression Regulation , Gestational Age , Gluconeogenesis , Inflammation , Intestines/microbiology , Macrophages/physiology , Mice , Obesity/etiology , Placenta/blood supply , Placenta/pathology , Pregnancy , Toll-Like Receptors/metabolism , beta-Defensins/metabolism
20.
J Ovarian Res ; 12(1): 49, 2019 May 25.
Article in English | MEDLINE | ID: mdl-31128594

ABSTRACT

BACKGROUND: We have previously shown that a whole flaxseed supplemented diet decreased the onset and severity of ovarian cancer in the laying hen, the only known animal model of spontaneous ovarian cancer. Flaxseed is rich in omega-3 fatty acids (OM3FA), mostly α-Linoleic acid (ALA), which gets converted to Docosahexaenoic acid (DHA) by the action of delta-6 desaturase enzyme. Ingestion of flaxseed also causes an increase in production of 2-methoxyestradiol (2MeOE2) via the induction of the CYP1A1 pathway of estrogen metabolism. We have previously reported that the flaxseed diet induces apoptosis via p38-MAPK pathway in chicken tumors. The objective of this study was to investigate the effect of the flaxseed diet on ovarian cancer in chickens, focusing on two hallmarks of cancer, apoptosis and angiogenesis. RESULTS: The anti-cancer effects of two active biologically derived compounds of flax diet, 2MeOE2 and DHA, were individually tested on human ovarian cancer cells and in vivo by the Chick Chorioallantoic Membrane (CAM) assay. Our results indicate that a flaxseed-supplemented diet promotes apoptosis and inhibits angiogenesis in chicken tumors but not in normal ovaries. 2MeOE2 promotes apoptosis in human ovarian cancer cells, inhibits angiogenesis on CAM and its actions are dependent on the p38-MAPK pathway. DHA does not have any pro-apoptotic effect on human ovarian cancer cells but has strong anti-angiogenic effects as seen on CAM, but not dependent on the p38-MAPK pathway. CONCLUSIONS: Dietary flaxseed supplementation promotes a pro-apoptotic and anti-angiogenic effect in ovarian tumors, not in normal ovaries. The biologically derived active compounds from flaxseed diet act through different pathways to elicit their respective anti-cancer effects. A flaxseed-supplemented diet is a promising approach for prevention of ovarian cancer as well as having a significant potential as an adjuvant treatment to supplement chemotherapeutic agents for treatment of advanced stages of ovarian cancer.


Subject(s)
2-Methoxyestradiol/pharmacology , Apoptosis/drug effects , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Flax , Ovarian Neoplasms/prevention & control , 2-Methoxyestradiol/administration & dosage , Animals , Cell Line, Tumor , Chickens , Chorioallantoic Membrane , Disease Models, Animal , Docosahexaenoic Acids/administration & dosage , Female , Flax/chemistry , Humans , MAP Kinase Signaling System/drug effects , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/prevention & control , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovary , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL