Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Harmful Algae ; 126: 102442, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37290890

ABSTRACT

Dinophysis acuminata produces Diarrhetic Shellfish Toxins (DST) that contaminate natural and farmed shellfish, leading to public health risks and economically impacting mussel farms. For this reason, there is a high interest in understanding and predicting D. acuminata blooms. This study assesses the environmental conditions and develops a sub-seasonal (7 - 28 days) forecast model to predict D. acuminata cells abundance in the Lyngen fjord located in northern Norway. A Support Vector Machine (SVM) model is trained to predict future D. acuminata cells abundance by using the past cell concentration, sea surface temperature (SST), Photosynthetic Active Radiation (PAR), and wind speed. Cells concentration of Dinophysis spp. are measured in-situ from 2006 to 2019, and SST, PAR, and surface wind speed are obtained by satellite remote sensing. D. acuminata only explains 40% of DST variability from 2006 to 2011, but it changes to 65% after 2011 when D. acuta prevalence reduced. The D. acuminata blooms can reach concentration up to 3954 cells l-1 and are restricted to the summer during warmer waters, varying from 7.8 to 12.7 °C. The forecast model predicts with fair accuracy the seasonal development of the blooms and the blooms amplitude, showing a coefficient of determination varying from 0.46 to 0.55. SST has been found to be a useful predictor for the seasonal development of the blooms, while the past cells abundance is needed for updating the current status and adjusting the blooms timing and amplitude. The calibrated model should be tested operationally in the future to provide an early warning of D. acuminata blooms in the Lyngen fjord. The approach can be generalized to other regions by recalibrating the model with local observations of D. acuminata blooms and remote sensing data.


Subject(s)
Dinoflagellida , Harmful Algal Bloom , Environmental Monitoring , Marine Toxins/analysis , Norway
2.
J Environ Radioact ; 100(5): 375-95, 2009 May.
Article in English | MEDLINE | ID: mdl-19304359

ABSTRACT

The spatial and temporal distributions of the anthropogenic radionuclides (137)Cs and (90)Sr, originating from nuclear bomb testing, the Sellafield reprocessing plant in the Irish Sea (UK), and from the Ob and Yenisey river discharges to the Arctic Ocean, have been simulated using the global version of the Miami Isopycnic Coordinate Ocean Model (MICOM). The physical model is forced with daily atmospheric re-analysis fields for the period of 1948-1999. Comparison of the temporal evolution of the observed and the simulated concentrations of (90)Sr has been performed in the Kara Sea. The relative contributions of the different sources on the temporal and spatial distributions of the surface (90)Sr are quantified over the simulated period. It follows that the Ob river discharge dominated the surface (90)Sr over most of the Arctic Ocean and along the eastern and western coasts of Greenland before 1960. During the period of 1980-1990, the atmospheric fallout and the Ob river discharge were equally important for the (90)Sr distribution in the Arctic Ocean. Furthermore, an attempt has been made to explore the possible dispersion of accidental released (90)Sr from the Ob and Yenisey rivers under a global warming scenario (2 x CO(2)). The difference between the present-day and the global warming scenario runs indicates that more of the released (90)Sr from the Ob and Yenisey rivers is confined to the Arctic Ocean in the global warming run, particularly in the near coastal, non-European part of the Arctic Ocean.


Subject(s)
Models, Theoretical , Radiation Monitoring/statistics & numerical data , Radioactive Pollutants/analysis , Strontium Radioisotopes/analysis , Arctic Regions , Atlantic Ocean , Cesium Radioisotopes/analysis , Computer Simulation , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL