Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Commun Med (Lond) ; 4(1): 94, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977844

ABSTRACT

BACKGROUND: Early evidence that patients with (multiple) pre-existing diseases are at highest risk for severe COVID-19 has been instrumental in the pandemic to allocate critical care resources and later vaccination schemes. However, systematic studies exploring the breadth of medical diagnoses are scarce but may help to understand severe COVID-19 among patients at supposedly low risk. METHODS: We systematically harmonized >12 million primary care and hospitalisation health records from ~500,000 UK Biobank participants into 1448 collated disease terms to systematically identify diseases predisposing to severe COVID-19 (requiring hospitalisation or death) and its post-acute sequalae, Long COVID. RESULTS: Here we identify 679 diseases associated with an increased risk for severe COVID-19 (n = 672) and/or Long COVID (n = 72) that span almost all clinical specialties and are strongly enriched in clusters of cardio-respiratory and endocrine-renal diseases. For 57 diseases, we establish consistent evidence to predispose to severe COVID-19 based on survival and genetic susceptibility analyses. This includes a possible role of symptoms of malaise and fatigue as a so far largely overlooked risk factor for severe COVID-19. We finally observe partially opposing risk estimates at known risk loci for severe COVID-19 for etiologically related diseases, such as post-inflammatory pulmonary fibrosis or rheumatoid arthritis, possibly indicating a segregation of disease mechanisms. CONCLUSIONS: Our results provide a unique reference that demonstrates how 1) complex co-occurrence of multiple - including non-fatal - conditions predispose to increased COVID-19 severity and 2) how incorporating the whole breadth of medical diagnosis can guide the interpretation of genetic risk loci.


Early in the COVID-19 pandemic it was clear that people with multiple chronic diseases were vulnerable and needed special protection, such as shielding. However, many people without such diseases required hospital care or died from COVID-19. Here, we investigated the importance of underlying diseases, including mild diseases not requiring hospitalization, for COVID-19 outcomes. Using information from electronic health records we find that many severe, but also less severe diseases increase the risk for severe COVID-19 and its impact on health even months after acute infection (Long COVID). This included an almost two-fold higher risk among people that reported poor well-being and fatigue. Our findings show the value of using primary care health records and the need to consider all the medical history of patients to identify those in need of special protection.

2.
medRxiv ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39006431

ABSTRACT

Early evidence that patients with (multiple) pre-existing diseases are at highest risk for severe COVID-19 has been instrumental in the pandemic to allocate critical care resources and later vaccination schemes. However, systematic studies exploring the breadth of medical diagnoses, including common, but non-fatal diseases are scarce, but may help to understand severe COVID-19 among patients at supposedly low risk. Here, we systematically harmonized >12 million primary care and hospitalisation health records from ~500,000 UK Biobank participants into 1448 collated disease terms to systematically identify diseases predisposing to severe COVID-19 (requiring hospitalisation or death) and its post-acute sequalae, Long COVID. We identified a total of 679 diseases associated with an increased risk for severe COVID-19 (n=672) and/or Long COVID (n=72) that spanned almost all clinical specialties and were strongly enriched in clusters of cardio-respiratory and endocrine-renal diseases. For 57 diseases, we established consistent evidence to predispose to severe COVID-19 based on survival and genetic susceptibility analyses. This included a possible role of symptoms of malaise and fatigue as a so far largely overlooked risk factor for severe COVID-19. We finally observed partially opposing risk estimates at known risk loci for severe COVID-19 for etiologically related diseases, such as post-inflammatory pulmonary fibrosis (e.g., MUC5B, NPNT, and PSMD3) or rheumatoid arthritis (e.g., TYK2), possibly indicating a segregation of disease mechanisms. Our results provide a unique reference that demonstrates how 1) complex co-occurrence of multiple - including non-fatal - conditions predispose to increased COVID-19 severity and 2) how incorporating the whole breadth of medical diagnosis can guide the interpretation of genetic risk loci.

3.
Nat Med ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039249

ABSTRACT

For many diseases there are delays in diagnosis due to a lack of objective biomarkers for disease onset. Here, in 41,931 individuals from the United Kingdom Biobank Pharma Proteomics Project, we integrated measurements of ~3,000 plasma proteins with clinical information to derive sparse prediction models for the 10-year incidence of 218 common and rare diseases (81-6,038 cases). We then compared prediction models developed using proteomic data with models developed using either basic clinical information alone or clinical information combined with data from 37 clinical assays. The predictive performance of sparse models including as few as 5 to 20 proteins was superior to the performance of models developed using basic clinical information for 67 pathologically diverse diseases (median delta C-index = 0.07; range = 0.02-0.31). Sparse protein models further outperformed models developed using basic information combined with clinical assay data for 52 diseases, including multiple myeloma, non-Hodgkin lymphoma, motor neuron disease, pulmonary fibrosis and dilated cardiomyopathy. For multiple myeloma, single-cell RNA sequencing from bone marrow in newly diagnosed patients showed that four of the five predictor proteins were expressed specifically in plasma cells, consistent with the strong predictive power of these proteins. External replication of sparse protein models in the EPIC-Norfolk study showed good generalizability for prediction of the six diseases tested. These findings show that sparse plasma protein signatures, including both disease-specific proteins and protein predictors shared across several diseases, offer clinically useful prediction of common and rare diseases.

4.
Lancet Digit Health ; 6(7): e470-e479, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38906612

ABSTRACT

BACKGROUND: Broad-capture proteomic technologies have the potential to improve disease prediction, enabling targeted prevention and management, but studies have so far been limited to very few selected diseases and have not evaluated predictive performance across multiple conditions. We aimed to evaluate the potential of serum proteins to improve risk prediction over and above health-derived information and polygenic risk scores across a diverse set of 24 outcomes. METHODS: We designed multiple case-cohorts nested in the EPIC-Norfolk prospective study, from participants with available serum samples and genome-wide genotype data, with more than 32 974 person-years of follow-up. Participants were middle-aged individuals (aged 40-79 years at baseline) of European ancestry who were recruited from the general population of Norfolk, England, between March, 1993 and December, 1997. We selected participants who developed one of ten less common diseases within 10 years of follow-up; we also subsampled a randomly drawn control subcohort, which also served to investigate 14 more common outcomes (n>70), including all-cause premature mortality (death before the age of 75 years; case numbers 71-437; controls 608-1556). Individuals were excluded from the current study owing to failed genotyping or proteomic quality control, relatedness, or missing information on age, sex, BMI, or smoking status. We used a machine learning framework to derive sparse predictive protein models for the onset of the the 23 individual diseases and all-cause premature mortality, and to derive a single common sparse multimorbidity signature that was predictive across multiple diseases from 2923 serum proteins. FINDINGS: Participants who developed one of ten less common diseases within 10 years of follow-up included 482 women and 507 men, with a mean age at baseline of 64·56 years (8·08). The random subcohort included 990 women and 769 men, with a mean age of 58·79 years (9·31). As few as five proteins alone outperformed polygenic risk scores for 17 of 23 outcomes (median dfference in concordance index [C-index] 0·13 [0·10-0·17]) and improved predictive performance when added over basic patient-derived information models for seven outcomes, achieving a median C-index of 0·82 (IQR 0·77-0·82). This included diseases with poor prognosis such as lung cancer (C-index 0·85 [+/- cross-validation error 0·83-0·87]), for which we identified unreported biomarkers such as C-X-C motif chemokine ligand 17. A sparse multimorbidity signature of ten proteins improved prediction across seven outcomes over patient-derived information models, achieving performances (median C-index 0·81 [IQR 0·80-0·82]) similar to those of disease-specific signatures. INTERPRETATION: We show the value of broad-capture proteomic biomarker discovery studies across multiple diseases of diverse causes, pointing to those that might benefit the most from proteomic approaches, and the potential to derive common sparse biomarker panels for prediction of multiple diseases at once. This framework could enable follow-up studies to explore the generalisability of proteomic models and to benchmark these against clinical assays, which are required to understand the translational potential of these findings. FUNDING: Medical Research Council, Health Data Research UK, UK Research and Innovation-National Institute for Health and Care Research, Cancer Research UK, and Wellcome Trust.


Subject(s)
Biomarkers , Machine Learning , Proteomics , Humans , Middle Aged , Male , Female , Prospective Studies , Biomarkers/blood , Proteomics/methods , Aged , Adult , England , Risk Assessment/methods , Risk Factors
5.
EBioMedicine ; 105: 105168, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878676

ABSTRACT

BACKGROUND: Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. METHODS: We investigated the association of 2002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomisation (MR) and colocalisation. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalisation were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumour tissue to assess their role in tumour aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. FINDINGS: We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which the majority replicated where data were available. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirmed an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also found an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that comparatively had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk also mapped to existing therapeutic interventions. INTERPRETATION: Our findings emphasise the importance of proteomics for improving our understanding of prostate cancer aetiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumours. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer. FUNDING: This work was supported by Cancer Research UK (grant no. C8221/A29017).


Subject(s)
Mendelian Randomization Analysis , Prostatic Neoplasms , Proteomics , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Risk Factors , Proteomics/methods , Genome-Wide Association Study , Biomarkers, Tumor/genetics , Transcriptome , Genetic Predisposition to Disease , Gene Expression Profiling , Polymorphism, Single Nucleotide , Odds Ratio , Proteome , Age of Onset
6.
Nat Commun ; 15(1): 4257, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763986

ABSTRACT

The COVID-19 pandemic exposed a global deficiency of systematic, data-driven guidance to identify high-risk individuals. Here, we illustrate the utility of routinely recorded medical history to predict the risk for 1883 diseases across clinical specialties and support the rapid response to emerging health threats such as COVID-19. We developed a neural network to learn from health records of 502,460 UK Biobank. Importantly, we observed discriminative improvements over basic demographic predictors for 1774 (94.3%) endpoints. After transferring the unmodified risk models to the All of US cohort, we replicated these improvements for 1347 (89.8%) of 1500 investigated endpoints, demonstrating generalizability across healthcare systems and historically underrepresented groups. Ultimately, we showed how this approach could have been used to identify individuals vulnerable to severe COVID-19. Our study demonstrates the potential of medical history to support guidance for emerging pandemics by systematically estimating risk for thousands of diseases at once at minimal cost.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Male , Female , United Kingdom/epidemiology , Pandemics , Medical History Taking , Middle Aged , Neural Networks, Computer , Aged , Adult , Risk Factors , Risk Assessment/methods , United States/epidemiology , Cohort Studies
7.
Nat Commun ; 15(1): 3621, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684708

ABSTRACT

Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Female , Risk Factors , Mendelian Randomization Analysis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Male , Blood Proteins/metabolism
8.
Nat Metab ; 6(4): 764-777, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429390

ABSTRACT

Surviving long periods without food has shaped human evolution. In ancient and modern societies, prolonged fasting was/is practiced by billions of people globally for religious purposes, used to treat diseases such as epilepsy, and recently gained popularity as weight loss intervention, but we still have a very limited understanding of the systemic adaptions in humans to extreme caloric restriction of different durations. Here we show that a 7-day water-only fast leads to an average weight loss of 5.7 kg (±0.8 kg) among 12 volunteers (5 women, 7 men). We demonstrate nine distinct proteomic response profiles, with systemic changes evident only after 3 days of complete calorie restriction based on in-depth characterization of the temporal trajectories of ~3,000 plasma proteins measured before, daily during, and after fasting. The multi-organ response to complete caloric restriction shows distinct effects of fasting duration and weight loss and is remarkably conserved across volunteers with >1,000 significantly responding proteins. The fasting signature is strongly enriched for extracellular matrix proteins from various body sites, demonstrating profound non-metabolic adaptions, including extreme changes in the brain-specific extracellular matrix protein tenascin-R. Using proteogenomic approaches, we estimate the health consequences for 212 proteins that change during fasting across ~500 outcomes and identified putative beneficial (SWAP70 and rheumatoid arthritis or HYOU1 and heart disease), as well as adverse effects. Our results advance our understanding of prolonged fasting in humans beyond a merely energy-centric adaptions towards a systemic response that can inform targeted therapeutic modulation.


Subject(s)
Caloric Restriction , Fasting , Proteome , Humans , Proteome/metabolism , Female , Male , Adult , Weight Loss , Proteomics/methods , Adaptation, Physiological
9.
Diabetologia ; 67(1): 102-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37889320

ABSTRACT

AIMS/HYPOTHESIS: The identification of people who are at high risk of developing type 2 diabetes is a key part of population-level prevention strategies. Previous studies have evaluated the predictive utility of omics measurements, such as metabolites, proteins or polygenic scores, but have considered these separately. The improvement that combined omics biomarkers can provide over and above current clinical standard models is unclear. The aim of this study was to test the predictive performance of genome, proteome, metabolome and clinical biomarkers when added to established clinical prediction models for type 2 diabetes. METHODS: We developed sparse interpretable prediction models in a prospective, nested type 2 diabetes case-cohort study (N=1105, incident type 2 diabetes cases=375) with 10,792 person-years of follow-up, selecting from 5759 features across the genome, proteome, metabolome and clinical biomarkers using least absolute shrinkage and selection operator (LASSO) regression. We compared the predictive performance of omics-derived predictors with a clinical model including the variables from the Cambridge Diabetes Risk Score and HbA1c. RESULTS: Among single omics prediction models that did not include clinical risk factors, the top ten proteins alone achieved the highest performance (concordance index [C index]=0.82 [95% CI 0.75, 0.88]), suggesting the proteome as the most informative single omic layer in the absence of clinical information. However, the largest improvement in prediction of type 2 diabetes incidence over and above the clinical model was achieved by the top ten features across several omic layers (C index=0.87 [95% CI 0.82, 0.92], Δ C index=0.05, p=0.045). This improvement by the top ten omic features was also evident in individuals with HbA1c <42 mmol/mol (6.0%), the threshold for prediabetes (C index=0.84 [95% CI 0.77, 0.90], Δ C index=0.07, p=0.03), the group in whom prediction would be most useful since they are not targeted for preventative interventions by current clinical guidelines. In this subgroup, the type 2 diabetes polygenic risk score was the major contributor to the improvement in prediction, and achieved a comparable improvement in performance when added onto the clinical model alone (C index=0.83 [95% CI 0.75, 0.90], Δ C index=0.06, p=0.002). However, compared with those with prediabetes, individuals at high polygenic risk in this group had only around half the absolute risk for type 2 diabetes over a 20 year period. CONCLUSIONS/INTERPRETATION: Omic approaches provided marginal improvements in prediction of incident type 2 diabetes. However, while a polygenic risk score does improve prediction in people with an HbA1c in the normoglycaemic range, the group in whom prediction would be most useful, even individuals with a high polygenic burden in that subgroup had a low absolute type 2 diabetes risk. This suggests a limited feasibility of implementing targeted population-based genetic screening for preventative interventions.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Prediabetic State/complications , Prospective Studies , Cohort Studies , Proteome , Multiomics , Risk Factors , Biomarkers
10.
Cell Rep ; 43(1): 113611, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38159276

ABSTRACT

Complement is a fundamental innate immune response component. Its alterations are associated with severe systemic diseases. To illuminate the complement's genetic underpinnings, we conduct genome-wide association studies of the functional activity of the classical (CP), lectin (LP), and alternative (AP) complement pathways in the Cooperative Health Research in South Tyrol study (n = 4,990). We identify seven loci, encompassing 13 independent, pathway-specific variants located in or near complement genes (CFHR4, C7, C2, MBL2) and non-complement genes (PDE3A, TNXB, ABO), explaining up to 74% of complement pathways' genetic heritability and implicating long-range haplotypes associated with LP at MBL2. Two-sample Mendelian randomization analyses, supported by transcriptome- and proteome-wide colocalization, confirm known causal pathways, establish within-complement feedback loops, and implicate causality of ABO on LP and of CFHR2 and C7 on AP. LP causally influences collectin-11 and KAAG1 levels and the risk of mouth ulcers. These results build a comprehensive resource to investigate the role of complement in human health.


Subject(s)
Genome-Wide Association Study , Mannose-Binding Lectin , Humans , Complement Activation , Complement System Proteins/metabolism , Lectins/metabolism , Haplotypes/genetics , Mannose-Binding Lectin/genetics
11.
Commun Biol ; 6(1): 1117, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923804

ABSTRACT

Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Middle Aged , Humans , Aged , Cognition , Neurons , Biomarkers
13.
medRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790472

ABSTRACT

Background: Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. Methods: We investigated the association of 2,002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomization (MR) and colocalization. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalization were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumor tissue to assess their role in tumor aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. Results: We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which a majority were novel and replicated. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirm an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also find an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk mapped to existing therapeutic interventions. Conclusion: Our findings emphasize the importance of proteomics for improving our understanding of prostate cancer etiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumors. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer.

14.
Nat Commun ; 14(1): 6156, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828025

ABSTRACT

Raynaud's phenomenon (RP) is a common vasospastic disorder that causes severe pain and ulcers, but despite its high reported heritability, no causal genes have been robustly identified. We conducted a genome-wide association study including 5,147 RP cases and 439,294 controls, based on diagnoses from electronic health records, and identified three unreported genomic regions associated with the risk of RP (p < 5 × 10-8). We prioritized ADRA2A (rs7090046, odds ratio (OR) per allele: 1.26; 95%-CI: 1.20-1.31; p < 9.6 × 10-27) and IRX1 (rs12653958, OR: 1.17; 95%-CI: 1.12-1.22, p < 4.8 × 10-13) as candidate causal genes through integration of gene expression in disease relevant tissues. We further identified a likely causal detrimental effect of low fasting glucose levels on RP risk (rG = -0.21; p-value = 2.3 × 10-3), and systematically highlighted drug repurposing opportunities, like the antidepressant mirtazapine. Our results provide the first robust evidence for a strong genetic contribution to RP and highlight a so far underrated role of α2A-adrenoreceptor signalling, encoded at ADRA2A, as a possible mechanism for hypersensitivity to catecholamine-induced vasospasms.


Subject(s)
Genome-Wide Association Study , Raynaud Disease , Humans , Ulcer , Raynaud Disease/genetics , Raynaud Disease/complications , Pain/complications , Transcription Factors/genetics , Homeodomain Proteins , Receptors, Adrenergic, alpha-2/genetics
15.
Obesity (Silver Spring) ; 31(11): 2862-2874, 2023 11.
Article in English | MEDLINE | ID: mdl-37752728

ABSTRACT

OBJECTIVE: Vaspin (visceral adipose tissue derived serine protease inhibitor, SERPINA12) is associated with obesity-related metabolic traits, but its causative role is still elusive. The role of genetics in serum vaspin variability to establish its causal relationship with metabolically relevant traits was investigated. METHODS: A meta-analysis of genome-wide association studies for serum vaspin from six independent cohorts (N = 7446) was conducted. Potential functional variants of vaspin were included in Mendelian randomization (MR) analyses to assess possible causal pathways between vaspin and homeostasis model assessment and lipid traits. To further validate the MR analyses, data from Genotype-Tissue Expression (GTEx) were analyzed, db/db mice were treated with vaspin, and serum lipids were measured. RESULTS: A total of 468 genetic variants represented by five independent variants (rs7141073, rs1956709, rs4905216, rs61978267, rs73338689) within the vaspin locus were associated with serum vaspin (all p < 5×10-8 , explained variance 16.8%). MR analyses revealed causal relationships between serum vaspin and triglycerides, low-density lipoprotein, and total cholesterol. Gene expression correlation analyses suggested that genes, highly correlated with vaspin expression in adipose tissue, are enriched in lipid metabolic processes. Finally, in vivo vaspin treatment reduced serum triglycerides in obese db/db mice. CONCLUSIONS: The data show that serum vaspin is strongly determined by genetic variants within vaspin, which further highlight vaspin's causal role in lipid metabolism.


Subject(s)
Lipid Metabolism , Serpins , Animals , Mice , Adipokines/metabolism , Genome-Wide Association Study , Lipid Metabolism/genetics , Obesity/metabolism , Serpins/blood , Serpins/genetics , Triglycerides , Humans
16.
Nat Commun ; 14(1): 3826, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429843

ABSTRACT

We conduct a large-scale meta-analysis of heart failure genome-wide association studies (GWAS) consisting of over 90,000 heart failure cases and more than 1 million control individuals of European ancestry to uncover novel genetic determinants for heart failure. Using the GWAS results and blood protein quantitative loci, we perform Mendelian randomization and colocalization analyses on human proteins to provide putative causal evidence for the role of druggable proteins in the genesis of heart failure. We identify 39 genome-wide significant heart failure risk variants, of which 18 are previously unreported. Using a combination of Mendelian randomization proteomics and genetic cis-only colocalization analyses, we identify 10 additional putatively causal genes for heart failure. Findings from GWAS and Mendelian randomization-proteomics identify seven (CAMK2D, PRKD1, PRKD3, MAPK3, TNFSF12, APOC3 and NAE1) proteins as potential targets for interventions to be used in primary prevention of heart failure.


Subject(s)
Genome-Wide Association Study , Heart Failure , Humans , Mendelian Randomization Analysis , Proteomics , Heart Failure/drug therapy , Heart Failure/genetics
17.
Mol Psychiatry ; 28(9): 3874-3887, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37495887

ABSTRACT

Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.


Subject(s)
Depression , Tandem Mass Spectrometry , Humans , Depression/metabolism , Diet , Metabolome/genetics , Vitamin A/metabolism , Hippurates , Metabolomics/methods
18.
Anal Chem ; 95(26): 9881-9891, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37338819

ABSTRACT

A linear ion trap (LIT) is an affordable, robust mass spectrometer that provides fast scanning speed and high sensitivity, where its primary disadvantage is inferior mass accuracy compared to more commonly used time-of-flight or orbitrap (OT) mass analyzers. Previous efforts to utilize the LIT for low-input proteomics analysis still rely on either built-in OTs for collecting precursor data or OT-based library generation. Here, we demonstrate the potential versatility of the LIT for low-input proteomics as a stand-alone mass analyzer for all mass spectrometry (MS) measurements, including library generation. To test this approach, we first optimized LIT data acquisition methods and performed library-free searches with and without entrapment peptides to evaluate both the detection and quantification accuracy. We then generated matrix-matched calibration curves to estimate the lower limit of quantification using only 10 ng of starting material. While LIT-MS1 measurements provided poor quantitative accuracy, LIT-MS2 measurements were quantitatively accurate down to 0.5 ng on the column. Finally, we optimized a suitable strategy for spectral library generation from low-input material, which we used to analyze single-cell samples by LIT-DIA using LIT-based libraries generated from as few as 40 cells.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Proteomics/methods , Tandem Mass Spectrometry/methods , Peptides/chemistry
19.
Nat Commun ; 14(1): 3280, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286573

ABSTRACT

Venous thromboembolism (VTE) is a common, multi-causal disease with potentially serious short- and long-term complications. In clinical practice, there is a need for improved plasma biomarker-based tools for VTE diagnosis and risk prediction. Here we show, using proteomics profiling to screen plasma from patients with suspected acute VTE, and several case-control studies for VTE, how Complement Factor H Related 5 protein (CFHR5), a regulator of the alternative pathway of complement activation, is a VTE-associated plasma biomarker. In plasma, higher CFHR5 levels are associated with increased thrombin generation potential and recombinant CFHR5 enhanced platelet activation in vitro. GWAS analysis of ~52,000 participants identifies six loci associated with CFHR5 plasma levels, but Mendelian randomization do not demonstrate causality between CFHR5 and VTE. Our results indicate an important role for the regulation of the alternative pathway of complement activation in VTE and that CFHR5 represents a potential diagnostic and/or risk predictive plasma biomarker.


Subject(s)
Venous Thromboembolism , Humans , Biomarkers , Complement Activation , Complement Factor H/genetics , Complement System Proteins/metabolism , Factor V , Venous Thromboembolism/genetics
20.
Sci Rep ; 13(1): 6236, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069249

ABSTRACT

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Proteins , Risk Factors , Disease Progression , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL