Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 19(7): e0306452, 2024.
Article in English | MEDLINE | ID: mdl-38995877

ABSTRACT

BACKGROUND: Children from families with low socioeconomic status (SES), as determined by income, experience several negative outcomes, such as higher rates of newborn mortality and behavioral issues. Moreover, associations between DNA methylation and low income or poverty status are evident beginning at birth, suggesting prenatal influences on offspring development. Recent evidence suggests neighborhood opportunities may protect against some of the health consequences of living in low income households. The goal of this study was to assess whether neighborhood opportunities moderate associations between household income (HI) and neonate developmental maturity as measured with DNA methylation. METHODS: Umbilical cord blood DNA methylation data was available in 198 mother-neonate pairs from the larger CANDLE cohort. Gestational age acceleration was calculated using an epigenetic clock designed for neonates. Prenatal HI and neighborhood opportunities measured with the Childhood Opportunity Index (COI) were regressed on gestational age acceleration controlling for sex, race, and cellular composition. RESULTS: Higher HI was associated with higher gestational age acceleration (B = .145, t = 4.969, p = 1.56x10-6, 95% CI [.087, .202]). Contrary to expectation, an interaction emerged showing higher neighborhood educational opportunity was associated with lower gestational age acceleration at birth for neonates with mothers living in moderate to high HI (B = -.048, t = -2.08, p = .03, 95% CI [-.092, -.002]). Female neonates showed higher gestational age acceleration at birth compared to males. However, within males, being born into neighborhoods with higher social and economic opportunity was associated with higher gestational age acceleration. CONCLUSION: Prenatal HI and neighborhood qualities may affect gestational age acceleration at birth. Therefore, policy makers should consider neighborhood qualities as one opportunity to mitigate prenatal developmental effects of HI.


Subject(s)
DNA Methylation , Gestational Age , Poverty , Humans , Female , Infant, Newborn , Male , Adult , Neighborhood Characteristics , Residence Characteristics , Pregnancy , Fetal Blood/metabolism , Income
2.
PeerJ ; 8: e8858, 2020.
Article in English | MEDLINE | ID: mdl-32509442

ABSTRACT

Trauma and related fear exert significant influence on mental and physical health throughout the lifespan and are associated with intergenerational patterns of development, health, and behavior. DNA methylation and gene expression are involved in our developmental adaptations to our experiences and can be influenced by social interventions. Patterns of DNA methylation and expression of a gene involved in neurodevelopment and psychiatric risk (BDNF) have been linked with childhood trauma. Given the intergenerational patterns of health and behavior, and previous links between childhood trauma and BDNF methylation and expression, this study investigated the potential for maternal history of traumatic experiences to influence development in her newborn, via changes in her newborn's BDNF methylation and expression. We found that mothers' trauma history was associated with epigenetic regulation of BDNF in their newborns. Moreover, the association between maternal trauma and BDNF methylation and expression patterns were moderated by newborn sex. Male newborns showed increased BDNF expression with maternal exposure to child abuse (p = .001), and increased BDNF methylation with greater maternal fear (p = .001). Female newborns showed reduced BDNF expression with greater maternal fear (p = .004). Practitioners strive to identify prevention and intervention avenues that will reduce the harmful effects of trauma. Future research should consider the potential for maternal historical trauma experiences to influence offspring DNA methylation and gene expression in a manner that could alter development and inform novel prevention strategies.

SELECTION OF CITATIONS
SEARCH DETAIL