Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Ann Biomed Eng ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240473

ABSTRACT

Contemporary injury tolerance of the lumbar spine for under-body blast references axial compression and bending moments in a limited range. Since injuries often occur in a wider range of flexion and extension with increased moment contribution, this study expands a previously proposed combined loading injury criterion for the lumbar spine. Fifteen cadaveric lumbar spine failure tests with greater magnitudes of eccentric loading were incorporated into an existing injury criterion to augment its applicability and a combined loading injury risk model was proposed by means of survival analysis. A loglogistic distribution was the most representative of injury risk, resulting in optimized critical values of Fr,crit = 6011 N, and My,crit = 904 Nm for the proposed combined loading metric. The 50% probability of injury resulted in a combined loading metric value of 1, with 0.59 and 1.7 corresponding to 5 and 95% injury risk, respectively. The inclusion of eccentric loaded specimens resulted in an increased contribution of the bending moment relative to the previously investigated flexion/extension range (previous My,crit = 1155 Nm), with the contribution of the resultant sagittal force reduced by nearly 200 N (previous Fr,crit = 5824 N). The new critical values reflect an expanded flexion/extension range of applicability of the previously proposed combined loading injury criterion for the human lumbar spine during dynamic compression.

2.
Mil Med ; 189(Supplement_3): 517-524, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160835

ABSTRACT

INTRODUCTION: With similar prevalence to injuries from fires, stings, and natural disasters, soft tissue injuries may occur from fireworks, industrial accidents, or other explosives. Surgeons are less familiar with treating high-velocity penetration from small debris, which may increase the chance of infection and subsequent fatality. Penetration risk curves have been developed to predict V50, the velocity with 50% probability of penetration, for various sized projectiles. However, there has been limited research using nonmetallic materials to achieve lower density projectiles less than 1 g cm-2, such as sand or rocks. MATERIAL AND METHODS: To emulate the size and density of these energized particles, 14 ball bearings of stainless steel, silicon nitride, or Delrin acetal plastic ranging from 1.59 mm (1/16") to 9.53 mm (3/8") with sectional densities between 0.3 g cm-2 and 5 g cm-2 were launched toward porcine legs at a range of velocities to determine the penetration thresholds. High-speed videography was captured laterally at 40 kHz and impact velocity was captured using a physics-based tracking software. A generalized linear model with repeated measures and a logit link function was used to predict probability of penetration for each projectile. A total of 600 impacts were conducted to achieve at least 15 penetrating impacts for each projectile over a range of velocities. RESULTS: Higher impact velocities were required to penetrate the skin as sectional density of the projectile decreased, and the relationship between velocity and sectional density exhibited an exponential relationship (V50, $ = 184.6*S{D^{ - 0.385}}$, R2 = 0.95) with substantial change for nonlinearity in sectional densities ranging from 0.3 g cm-2 to 1 g cm-2. Compared to previous studies, the empirical relationship was consistent in the linear region (2-5 g cm-2), and novel experimentation filled in the gaps for sectional densities less than 1 g cm-2, which expressed more nonlinearity than previously estimated. For low-density projectiles with diameters of 1.59 (1/16") or 3.18 (1/8"), 32 impacts were lodged into the epidermis but did not penetrate through the dermis; however, penetration was defined as displacement into or through the dermis. CONCLUSIONS: These experimental results may be used to develop and validate finite element simulations of low-density projectile impacts to address complex, multivariate loading conditions for the development of protective clothing to reduce wounding and subsequent infection rates.


Subject(s)
Blast Injuries , Animals , Swine , Blast Injuries/physiopathology , Extremities/injuries
3.
J Mech Behav Biomed Mater ; 159: 106710, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39216336

ABSTRACT

Ballistic gelatin has been extensively used in ballistics research for decades, but calibration standards were established on limited datasets, and only few studies have attempted to recreate these experiments with biological tissues. Recent studies have demonstrated better biofidelity with 20% ordnance ballistic gelatin, but researchers have discredited the use of synthetic gelatin claiming different behavior than ordnance gelatin. To investigate the use of synthetic clear gelatin as an acceptable surrogate of biological tissue, depth of penetration was compared between low-velocity impacts of various projectiles into porcine tissue (n = 192), post-mortem human subjects (n = 29), and Clear Ballistics synthetic gelatin (n = 39). The predicted depth of penetration of the 0.177" steel BB (38.1 mm) was consistent with the manufacturer's calibration standard (31.75-44.45 mm) and within calibration bounds of recently proposed empirical equations. Compared to impacts in biological tissue, synthetic gelatin demonstrated the least variability in depth of penetration (R2 = 0.96). Using ANCOVA, velocity was a significant covariate (p < 0.001), and there were no significant differences in normalized depth of penetration over density between porcine tissue, post-mortem human subjects, and 20% synthetic gelatin (p = 0.22). Ultimately, this study confirmed the use of 20% synthetic gelatin as an acceptable tissue simulant using standard calibration methods for use in future ballistic studies.

4.
Med Eng Phys ; 130: 104199, 2024 08.
Article in English | MEDLINE | ID: mdl-39160027

ABSTRACT

Quantifying the mechanical behavior of skin has been foundational in applications of cosmetics, surgical techniques, forensic science, and protective clothing development. However, previous puncture studies have lacked consistent and physiological boundary conditions of skin. To determine natural skin tension, excision of in situ porcine skin resulted in significantly different diameter reduction (shrinkage) in leg (19.5 %) and abdominal skin (38.4 %) compared to flank skin (28.5 %) (p = 0.047). To examine effects of initial tension and pre-conditioning, five conditions of initial tension (as percentage of diameter increase) and pre-conditioning were tested in quasistatic puncture with a 5 mm spherical impactor using an electrohydraulic load frame and custom clamping apparatus. Samples with less than 5 % initial tension resulted in significantly greater (p = 0.011) force at failure (279.2 N) compared to samples with greater than 25 % initial tension (195.1 N). Eight pre-conditioning cycles of 15 mm displacement reduced hysteresis by 45 %. The coefficient of variance was substantially reduced for force, force normalized by cutis thickness, displacement, stiffness, and strain energy up to 46 %. Pre-conditioned samples at physiological initial tension (14-25 %) resulted in significantly greater (p = 0.03) normalized forces at failure (278.3 N/mm) compared to non-conditioned samples of the same initial tension (234.4 N/mm). Pre-conditioned samples with 14-25 % initial tension, representing physiological boundary conditions, resulted in the most appropriate failure thresholds with the least variation. For in vitro puncture studies, the magnitude of applied initial tension should be defined based on anatomical location, through a shrinkage experimentation, to match natural tension of skin. Characterizing the biological behavior and tolerances of skin may be utilized in finite element models to aid in protective clothing development and forensic science analyses.


Subject(s)
Skin , Animals , Swine , Materials Testing , Biomechanical Phenomena , Punctures , Mechanical Phenomena , Stress, Mechanical , Skin Physiological Phenomena , Mechanical Tests
5.
J Biomech Eng ; 146(11)2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38884993

ABSTRACT

Blunt force trauma remains a serious threat to many populations and is commonly seen in motor vehicle crashes, sports, and military environments. Effective design of helmets and protective armor should consider biomechanical tolerances of organs in which they intend to protect and require accurate measurements of deformation as a primary injury metric during impact. To overcome challenges found in velocity and displacement measurements during blunt impact using an integrated accelerometer and two-dimensional (2D) high-speed video, three-dimensional (3D) digital image correlation (DIC) measurements were taken and compared to the accepted techniques. A semispherical impactor was launched at impact velocities from 14 to 20 m/s into synthetic ballistic gelatin to simulate blunt impacts observed in behind armor blunt trauma (BABT), falls, and sports impacts. Repeated measures Analysis of Variance resulted in no significant differences in maximum displacement (p = 0.10), time of maximum displacement (p = 0.21), impact velocity (p = 0.13), and rebound velocity (p = 0.21) between methods. The 3D-DIC measurements demonstrated equal or improved percent difference and low root-mean-square deviation compared to the accepted measurement techniques. Therefore, 3D-DIC may be utilized in BABT and other blunt impact applications for accurate 3D kinematic measurements, especially when an accelerometer or 2D lateral camera analysis is impractical or susceptible to error.


Subject(s)
Imaging, Three-Dimensional , Biomechanical Phenomena , Wounds, Nonpenetrating/diagnostic imaging , Wounds, Nonpenetrating/physiopathology , Mechanical Phenomena , Humans
6.
Front Public Health ; 12: 1331313, 2024.
Article in English | MEDLINE | ID: mdl-38560436

ABSTRACT

Objective: Multiple studies evaluate relative risk of female vs. male crash injury; clinical data may offer a more direct injury-specific evaluation of sex disparity in vehicle safety. This study sought to evaluate trauma injury patterns in a large trauma database to identify sex-related differences in crash injury victims. Methods: Data on lap and shoulder belt wearing patients age 16 and up with abdominal and pelvic injuries from 2018 to 2021 were extracted from the National Trauma Data Bank for descriptive analysis using injuries, vital signs, International Classification of Disease (ICD) coding, age, and injury severity using AIS (Abbreviated Injury Scale) and ISS (Injury Severity Score). Multiple linear regression was used to assess the relationship of shock index (SI) and ISS, sex, age, and sex*age interaction. Regression analysis was performed on multiple injury regions to assess patient characteristics related to increased shock index. Results: Sex, age, and ISS are strongly related to shock index for most injury regions. Women had greater overall SI than men, even in less severe injuries; women had greater numbers of pelvis and liver injuries across severity categories; men had greater numbers of injury in other abdominal/pelvis injury regions. Conclusions: Female crash injury victims' tendency for higher (AIS) severity of pelvis and liver injuries may relate to how their bodies interact with safety equipment. Females are entering shock states (SI > 1.0) with lesser injury severity (ISS) than male crash injury victims, which may suggest that female crash patients are somehow more susceptible to compromised hemodynamics than males. These findings indicate an urgent need to conduct vehicle crash injury research within a sex-equity framework; evaluating sex-related clinical data may hold the key to reducing disparities in vehicle crash injury.


Subject(s)
Accidents, Traffic , Liver , Humans , Male , Female , Adolescent , Injury Severity Score , Protective Devices , Hemodynamics
7.
J Biomech Eng ; 146(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37295932

ABSTRACT

The objective of this study was to compare the kinematics of the head-neck, torso, pelvis, and lower extremities and document injuries and their patterns to small female occupants in frontal impacts with upright and reclined postures using an experimental model. Six postmortem human surrogates (PMHS) with a mean stature of 154 ± 9.0 cm and mass of 49 ± 12 kg were equally divided between upright and reclined groups (seatback: 25 deg and 45 deg), restrained by a three-point integrated belt, positioned on a semirigid seat, and exposed to low and moderate crash velocities (15 km/h and 32 km/h respectively). The response between the upright and reclined postures was similar in magnitude and curve morphology. While none of the differences were statistically significant, the thoracic spine demonstrated increased downward (+Z) displacement, and the head demonstrated an increased horizontal (+X) displacement for the reclined occupants. In contrast, the upright occupants showed a slightly increased downward (+Z) displacement at the head, but the torso displaced primarily along the +X direction. The posture angles between the two groups were similar at the pelvis and different at the thorax and head. At 32 km/h, both cohorts exhibited multiple rib failure, with upright specimens having a greater number of severe fractures. Although MAIS was the same in both groups, the upright specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. This preliminary study may be useful in validating physical (ATDs) and computational (HBMs) surrogates.


Subject(s)
Accidents, Traffic , Torso , Humans , Female , Pelvis/physiology , Spine/physiology , Posture/physiology , Biomechanical Phenomena
8.
Mil Med ; 188(Suppl 6): 393-399, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948210

ABSTRACT

INTRODUCTION: Combat-related injuries from improvised explosive devices occur commonly to the lower extremity and spine. As the underbody blast impact loading traverses from the seat to pelvis to spine, energy transfer occurs through deformations of the combined pelvis-sacrum-lumbar spine complex, and the time factor plays a role in injury to any of these components. Previous studies have largely ignored the role of the time variable in injuries, injury mechanisms, and warfighter tolerance. The objective of this study is to relate the time or temporal factor using a multi-component, pelvis-sacrum-lumbar spinal column complex model. MATERIALS AND METHODS: Intact pelvis-sacrum-spine specimens from pre-screened unembalmed human cadavers were prepared by fixing at the superior end of the lumbar spine, pelvis and abdominal contents were simulated, and a weight was added to the cranial end of the fixation to account for torso effective mass. Prepared specimens were placed on the platform of a custom vertical accelerator device and aligned in a seated soldier posture. An accelerometer was attached to the seat platen of the device to record the time duration to peak velocity. Radiographs and computed tomography images were used to document and associate injuries with time duration. RESULTS: The mean age, stature, weight, body mass index, and bone density of 12 male specimens were as follows: 65 ± 11 years, 1.8 ± 0.01 m, 83 ± 13 kg, 27 ± 5.0 kg/m2, and 114 ± 21 mg/cc. They were equally divided into short, medium, and long time durations: 4.8 ± 0.5, 16.3 ± 7.3, and 34.5 ± 7.5 ms. Most severe injuries associated with the short time duration were to pelvis, although they were to spine for the long time duration. CONCLUSIONS: With adequate time for the underbody blast loading to traverse the pelvis-sacrum-spine complex, distal structures are spared while proximal/spine structures sustain severe/unstable injuries. The time factor may have implications in seat and/or seat structure design in future military vehicles to advance warfighter safety.


Subject(s)
Blast Injuries , Spinal Injuries , Humans , Male , Middle Aged , Aged , Sacrum/injuries , Spinal Injuries/etiology , Explosions , Pelvis/injuries , Lumbar Vertebrae , Cadaver , Biomechanical Phenomena
9.
Accid Anal Prev ; 193: 107294, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37722257

ABSTRACT

The objective of the present study was to analyze injuries and their patterns to obese occupants in frontal impacts with upright and reclined postures using experimental data. Twelve obese post-mortem human subjects (PMHS) were positioned on a sled buck with seatback angles of 250 or 450 from the vertical, termed as upright and reclined postures. They were restrained with a seat belt and pretensioner. Frontal impact tests were conducted at 8.9 or 13.9 m/s, termed as low and high velocities. After the test, x-rays and CTs were taken, and an autopsy was conducted. The Maximum AIS (MAIS) and Injury Severity Score (ISS) were calculated, and injury patterns were analyzed. The mean age, stature, total body mass, and body mass indexes were 67 years, 112 kg, and 1.7 m, and 38 kg/m2. None of these parameters were statistically significantly different between any groups. The mean thickness of the soft tissues in the left anterior lateral, central, and right anterior lateral aspects were 44 mm, 24 mm, and 46 mm. In the low-velocity tests, the ISS data were 9, 18, and 9 for the upright, and 9, 9, and 4 for the reclined specimens, and in the high velocity tests, they were 29, 17, and 27 for the upright, and 27, 13, and 27 for the reclined postures. Other data are given in the paper. For both postures at the low velocity, injuries were concentrated at one body region, and the ISS data were in the mild category; in contrast, at the high velocity, other body regions also sustained injuries, and the ISS data were in the major trauma category. From MAIS perspectives, injuries to obese occupants did not change between postures and were independent of the energy input to the system. The association of chest with pelvis injuries in upright and reclined postures to obese occupants may have additional consequences following the initial injury to this group of our population.

10.
Mil Med ; 188(11-12): e3447-e3453, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37552649

ABSTRACT

INTRODUCTION: Any type of boot or footwear is designed to attenuate and distribute loading to the bottom of the foot. Anthropomorphic test device (ATDs) are used to assess potential countermeasures against these loads. The specific aims of this study were to compare and quantify force attenuation characteristics as a function of input energy for Hybrid-III and Mil-Lx ATD human surrogates. MATERIALS AND METHODS: Two lower leg ATD surrogates (Mil-Lx and Hybrid-III) were tested to investigate the influence of a commercially available military boot on lower extremity force response and assess such differences against previously published postmortem human surrogate studies. The testing apparatus impacted the bottom of the foot using a rigid plate at velocities from 2 to 10 m/s. Tests were conducted on each ATD to obtain axial force response with and without boots as a function of input energy. RESULTS: Peak forces ranged from 1 to 16.4 kN for the Hybrid-III, and 1 to 8.4 kN for the Mil-Lx for similar input conditions. The average force attenuation for the Hybrid-III at upper and lower load cells was 71% (59%-80%) and 70% (58%-78%). The average attenuation for the Mil-Lx at upper and lower load cells was 20% (13%-28%) and 37% (36%-37%), respectively. At the knee load cell, the attenuated peak loads ranged from 62% to 81% for the Hybrid-III and 16% to 30% for the Mil-Lx. CONCLUSIONS: Force attenuation characteristics in the booted vs unbooted configuration of the Mil-Lx were significantly different than force attenuation characteristics of the H3 and may better represent in vivo forces during vertical impact injuries, such as IED blasts. Hence for military relevant applications where boots are used, the Mil-Lx may provide a more conservative evaluation of lower extremity protection systems.


Subject(s)
Leg , Lower Extremity , Humans , Biomechanical Phenomena , Lower Extremity/physiology , Foot , Explosions , Accidents, Traffic , Manikins
11.
Accid Anal Prev ; 190: 107157, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37336050

ABSTRACT

Cervical spine (c-spine) injuries are a common injury during automobile crashes. The objective of this study is to verify an existing head-neck (HN) finite element model with military volunteer frontal impact kinematics by varying the muscle activation scheme from previous literature. Proper muscle activation will allow for accurate percent elongation (strain) of the c-spine ligaments and will serve to establish ligamentous response during non-injury frontal impacts. Previous human research volunteer (HRV) frontal impact sled tests reported kinematic data that served as the input for HN model simulation. Peak sled acceleration (PSA) was varied between 10G and 30G for HRVs. Muscle activation was shifted to begin at 0 ms at start of impact to allow for proper muscle contraction in the HN model. Then, extensor muscle activation magnitude was varied between 20 and 100% to determine the proper activation necessary to match kinematic outputs from the model with experimental results. The model was validated against 10G test recorded response. Ligament strain was measured from multiple ligaments along the c-spine once the model was verified. The 40% activated extensor muscle scheme was deemed the most biofidelic, with CORA scores of 0.743 and 0.686 for head X linear acceleration and angular Y acceleration for 10G pulse. All PSA groups scored well with this muscle activation. Most ligaments were buffered well by the active simulation, with only the interspinous ligament nearing physiologic injury. With the HN model verified against additional kinematic data, simulations with higher accelerations to predict areas of injury in real life crash scenarios are possible.


Subject(s)
Military Personnel , Neck Injuries , Sprains and Strains , Humans , Accidents, Traffic , Cervical Vertebrae/injuries , Ligaments/injuries , Volunteers , Biomechanical Phenomena , Acceleration , Muscles/injuries
12.
J Biomech ; 150: 111490, 2023 03.
Article in English | MEDLINE | ID: mdl-36878113

ABSTRACT

Pelvis and lumbar spine fractures occur in falls, motor vehicle crashes, and military combat events. They are attributed to vertical impact from the pelvis to the spine. Although whole-body cadavers were exposed to this vector and injuries were reported, spinal loads were not determined. While previous studies determined injury metrics such as peak forces using isolated pelvis or spine models, they were not conducted using the combined pelvis-spine columns, thereby not accounting for the interaction between the two body regions. Earlier studies did not develop response corridors. The study objectives were to develop temporal corridors of loads at the pelvis and spine and assess clinical fracture patterns using a human cadaver model. Vertical impact loads were delivered at the pelvic end to twelve unembalmed intact pelvis-spine complexes, and pelvis forces and spinal loads (axial, shear and resultant and bending moments) were obtained. Injuries were classified using clinical assessments from post-test computed tomography scans. Spinal injuries were stable in eight and unstable in four specimens. Pelvis injuries included ring fractures in six and unilateral pelvis in three, sacrum fractures in ten, and two specimens did not sustain any injuries to the pelvis or sacrum complex. Data were grouped based on time to peak velocity, and ± one standard deviation corridors about the mean of the biomechanical metrics were developed. Time-history corridors of loads at the pelvis and spine, hitherto not reported in any study, are valuable to assess the biofidelity of anthropomorphic test devices and assist validating finite element models.


Subject(s)
Blast Injuries , Spinal Fractures , Spinal Injuries , Humans , Lumbar Vertebrae , Explosions , Pelvis , Cadaver , Biomechanical Phenomena/physiology
14.
J Biomech Eng ; 145(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36062977

ABSTRACT

Increased interest in the airline industry to enhance occupant comfort and maximize seating density has prompted the design and installation of obliquely mounted seats in aircraft. Previous oblique whole-body sled tests demonstrated multiple failures, chiefly distraction-associated spinal injuries under oblique impacts. The present computational study was performed with the rationale to examine how oblique loading induces component level responses and associated injury occurrence. The age-specific human body model (HBM) was simulated for two oblique seating conditions (with and without an armrest). The boundary conditions consisted of a 16 g standard aviation crash pulse, 45 deg seat orientation, and with restrained pelvis and lower extremities. The overall biofidelity rating for both conditions ranged from 0.5 to 0.7. The validated models were then used to investigate the influence of pulse intensity and seat orientation by varying the pulse from 16 g to 8 g and seat orientation from 0 deg to 90 deg. A total of 12 parametric simulations were performed. The pulse intensity simulations suggest that the HBM could tolerate 11.2 g without lumbar spine failure, while the possibility of cervical spine failure reduced with the pulse magnitude <9.6 g pulse. The seat orientation study demonstrated that for all seat angles the HBM predicted failure in the cervical and lumbar regions at 16 g; however, the contribution of the tensile load and lateral and flexion moments varied with respect to the change in seat angle. These preliminary outcomes are anticipated to assist in formulating safety standards and in designing countermeasures for oblique seating configurations.


Subject(s)
Accidents, Traffic , Head , Aircraft , Biomechanical Phenomena , Head/physiology , Humans , Lumbar Vertebrae
15.
Forensic Sci Med Pathol ; 19(1): 34-43, 2023 03.
Article in English | MEDLINE | ID: mdl-36100841

ABSTRACT

Secondary blast injuries may result from high-velocity projectile fragments which ultimately increase medical costs, reduce active work time, and decrease quality of life. The role of skin penetration requires more investigation in energy absorption and surface mechanics for implementation in computational ballistic models. High-speed ballistic penetration studies have not considered penetrating and non-penetrating biomechanical properties of the skin, including radial wave displacement, resultant surface wave speed, or projectile material influence. A helium-pressurized launcher was used to accelerate 3/8″ (9.525 mm) diameter spherical projectiles toward seventeen whole porcine legs from seven pigs (39.53 ± 7.28 kg) at projectile velocities below and above V50. Projectiles included a mix of materials: stainless steel (n = 26), Si3N4 (n = 24), and acetal plastic (n = 24). Tracker video analysis software was used to determine projectile velocity at impact from the perpendicular view and motion of the tissue displacement wave from the in-line view. Average radial wave displacement and surface wave speed were calculated for each projectile material and categorized by penetrating or non-penetrating impacts. Two-sample t-tests determined that non-penetrating projectiles resulted in significantly faster surface wave speeds in porcine skin for stainless steel (p = 0.002), plastic (p = 0.004), and Si3N4 ball bearings (p = 0.014), while ANOVA determined significant differences in radial wave displacement and surface wave speed between projectile materials. Surface wave speed was used to quantify mechanical properties of the skin including elastic modulus, shear modulus, and bulk modulus during ballistic impact, which may be implemented to simulate accurate deformation behavior in computational impact models.


Subject(s)
Quality of Life , Stainless Steel , Animals , Swine , Plastics , Software
16.
J Biomech ; 145: 111367, 2022 12.
Article in English | MEDLINE | ID: mdl-36343414

ABSTRACT

Previous full body cadaver testing has shown that both obliquely oriented seats in survivable aircraft crashes and far-side oblique crashes in vehicles present distinctive occupant kinematics that are not yet well understood. Knowledge surrounding how these loading scenarios affect the lumbar spine is particularly lacking as there exists minimal research concerning oblique loading. The current study was created to evaluate a novel experimental method through comparison with existing literature, and to examine the impact of a static bending pre-load (posture) on the load-displacement response for the whole lumbar spine loaded in non-destructive axial distraction. T12-S1 lumbar spines were tested in tension to 4 mm of displacement while positioned in one of three pre-load postures. These postures were: the spine's natural, unloaded curvature (neutral), flexed forward (flexed), and combined flexion and lateral bending (oblique). Deviations from a neutral spine position were shown to significantly increase peak loads and tensile stiffness. The presence of a flexion pre-load caused statistically significant increases in tensile stiffness, tensile force, and bending moments. The addition of a lateral bending pre-load to an already flexed spine did not significantly alter the tensile response. However, the flexion moment response was significantly affected by the additional postural pre-load. This work indicates that the initial conditions of distraction loading significantly affect lumbar spine load response. Therefore, future testing that seeks to emulate crash dynamics of obliquely seated occupants must account for multi-axis loading.

17.
Traffic Inj Prev ; 23(sup1): S211-S213, 2022.
Article in English | MEDLINE | ID: mdl-36223530

ABSTRACT

Objective: The objective of the current study was to compare the GHBMC female model responses with in-house sled test data for three small female post mortem human surrogates (PMHS) at 32 km/h and a seatback recline angle of 45 degrees. The kinematics and the seatbelt forces were used to compare the female PMHS and model responses. The study aimed to identify updates that may be needed to the model.Methods: In-house experimental sled test kinematic and seatbelt response data for the small females were obtained. The 5th female GHBMC was simulated with the same boundary conditions as in the experiments. In addition, using the PMHS computed tomography (CT) and test environment scans, the female model geometry was updated to a subject-specific model for one of the specimens, and the models were simulated to obtain 5th female and subject-specific model responses. The kinematic response and the seatbelt forces for the two models were compared with the average of the three experimental data.Results: The head, T8 and L4 excursions, head and pelvis accelerations and seatbelt forces for the two female models were compared with the experimental data. The model responses were in agreement with the PMHS; however, the subject-specific model showed a closer agreement with the kinematic response. The subject-specific model did not submarine as in the experiments, whereas the 5th female model submarined. However, the subject-specific model showed 20% higher seatbelt forces than the PMHS.Conclusion: This study showed that anthropometric differences may significantly alter occupant kinematics in reclined posture and need to be incorporated to investigate kinematics and injury mechanisms. The next step of the study involves incorporating age-specific material changes and investigating the subject-specific injury mechanisms. The results will be useful to develop countermeasures for autonomous vehicles.


Subject(s)
Accidents, Traffic , Seat Belts , Humans , Female , Cadaver , Pelvis/physiology , Posture , Biomechanical Phenomena , Acceleration
18.
Traffic Inj Prev ; 23(sup1): S26-S31, 2022.
Article in English | MEDLINE | ID: mdl-36095155

ABSTRACT

Objectives: The transmission of impact loading from the seat-to-pelvis-to-lumbar spine in a seated occupant in automotive and military events is a mechanism for fractures to these body regions. While postmortem human subject (PMHS) studies have replicated fractures to the pelvis or lumbar spine using isolated/component models, the role of the time factor that manifests as a loading rate issue on injuries has not been fully investigated in literature. The objective of this study was to explore the hypothesis that short duration pulses fracture the pelvis while longer pulses fracture the spine, and intermediate pulses involve both components.Methods: Unembalmed PMHS thoracolumbar spine-pelvis specimens were fixed at the superior end, and a six-axis load cell was attached. The specimens were mounted on a vertical accelerator, and noninjury and injury tests were conducted by applying short, medium, or long pulses with 5, 15, or 35 ms durations, respectively. Peak axial, shear and resultant forces were obtained. Injuries were documented using posttest x-ray and computed tomography images and scaled using the AIS (2015).Results: The mean age, stature, weight, body mass index, and BMD of twelve specimens were 64.8 ± 11.4 years, 1.8 ± 0.01 m, 83 ± 13 kg, 26.7 ± 5.0 kg/m2, and 114.5 ± 21.3 mg/cc, respectively. For the short, long, and medium duration pulses, the mean resultant forces were 5.6 ± 0.9 kN, 5.9 ± 0.94 kN, and 5.4 ± 1.8 kN, and time durations were 4.8 ± 0.5 ms, 16.3 ± 7.3 ms, and 34.5 ± 7.5 ms, respectively. For the short pulse, pelvis injuries were more severe in 3 out 4 specimens, for the medium pulse, they were distributed between the pelvis and spine, and for the long pulse, spine injuries were more severe in 3 out of 4 specimens.Conclusions: While acknowledging the limitations of the sample size, the results of this study support the hypothesis of the time variable in the tradeoff between pelvis and spine injuries with pulse duration. The tradeoff pattern is attributed to mass recruitment: short pulse biases injuries to pelvis while limiting spinal injuries, and the opposite is true for the longer pulse, thus supporting the hypothesis. It is important to account for the time variable in injury analysis.


Subject(s)
Fractures, Bone , Spinal Injuries , Humans , Middle Aged , Aged , Accidents, Traffic , Cadaver , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/injuries , Pelvis/injuries , Biomechanical Phenomena
19.
J Mech Behav Biomed Mater ; 134: 105332, 2022 10.
Article in English | MEDLINE | ID: mdl-35987107

ABSTRACT

Calcaneus fracture is the most common tarsal bone fracture and is associated with external loads resulting from vehicle crashes, under body blasts, or sports. Almost 50% of weight bearing by the foot occurs through the calcaneus and its surgical fixation remains a challenging procedure. Postmortem human subjects were used to measure the regional trabecular BMD of the calcaneus. Mean age, height and weight of the included 14 specimens was 69 years, 177 cm and 80 kg respectively. Using a custom mode within Quantitative Computed Tomography clinical software; calcaneal trabecular BMD in the anterior and posterior regions was quantified. Tolerance data and calcaneus fracture patterns were also available for these specimens from previous tests. The posterior region of the calcaneus had a higher mean BMD (114 mg/cc) than the anterior region (81 mg/cc). These BMD differences also paralleled injury outcome of specimens from axial loading with 50% of specimens resulting in high severity anterior region calcaneal fractures and 36% of specimens resulting in low severity posterior calcaneal fractures. These findings may be reflective of the lower BMD in the anterior region, although the load was uniformly distributed across the plantar surface of the foot. Severity of fracture was greater (intraarticular/crush) in the anterior region as compared to fractures of the posterior region. The BMD ratio between anterior and posterior was significant (p = 0.02) between anterior region fractures and posterior region fractures. The ratio parameter may indicate that the disparity in trabecular BMD between anterior and posterior calcaneus regions is more important in predicting injury outcome than the absolute BMD value of each region.


Subject(s)
Ankle Injuries , Calcaneus , Foot Injuries , Fractures, Bone , Aged , Bone Density , Calcaneus/diagnostic imaging , Cancellous Bone/diagnostic imaging , Fractures, Bone/diagnostic imaging , Humans
20.
J Forensic Leg Med ; 90: 102395, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35863258

ABSTRACT

Buried blast explosions create small projectiles which can become lodged in the tissue of personnel as far away as hundreds of meters. Without appropriate treatment, these lodged projectiles can become a source of infection and prolonged injury to soldiers in modern combat. Human cadavers can be used as surrogates for living humans for ballistic penetration testing, but human cadavers are frozen during transport and storage. The process of freezing and thawing the tissue before testing may change the biomechanical properties of the tissue. The goal of the current study was to understand penetration threshold differences between fresh, refrigerated, and frozen tissue and investigate factors that may contribute to these differences. A custom-built pneumatic launcher was used to accelerate 3/16″ stainless steel ball bearings toward porcine legs that were either tested fresh, following refrigerated storage, or following frozen storage. A generalized linear mixed model, accounting for within-animal dependence, owing to repeated observations, was found to be the most appropriate for these data and was used for analysis. The "generalized" model accommodated non-continuous observations, provided a straight-forward way to implement the repeated measures, and provided a risk estimate for projectile penetration. Both storage condition (p = 0.48) and leg (p = 0.07) were shown to be not significant and the confidence intervals for those variables were overlapping. As all covariates were found to be non-significant, a single model containing all impacts was used to develop a V50, or velocity at which 50% of impacts are expected to penetrate. From this model, 50% probability of penetration occurs at 137.3 m/s with 95% confidence intervals at 132.0 and 144.0 m/s. In this study, the fresh legs and previously frozen legs allowed penetration at similar velocities indicating that previously frozen legs were acceptable surrogates for fresh legs. This study only compared the penetration threshold in tissues that had been stored in differing conditions. To truly study penetration, more conditions will need to be studied including the effects of projectile mass and material, the effects of projectile shape, and the effects of clothing or protective layers on penetration threshold.


Subject(s)
Explosions , Leg , Animals , Cadaver , Humans , Linear Models , Swine
SELECTION OF CITATIONS
SEARCH DETAIL