Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 44413, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28294128

ABSTRACT

A combination of the functionalities of carbon nanotube (CNT)-Si hybrid heterojunctions is presented as a novel method to steer the efficiency of the photovoltaic (PV) cell based on these junctions, and to increase the selectivity and sensitivity of the chemiresistor gas sensor operated with the p-doped CNT layer. The electrical characteristics of the junctions have been tracked by exposing the devices to oxidizing (NO2) and reducing (NH3) molecules. It is shown that when used as PV cells, the cell efficiency can be reversibly steered by gas adsorption, providing a tool to selectively dope the p-type layer through molecular adsorption. Tracking of the current-voltage curve upon gas exposure also allowed to use these cells as gas sensors with an enhanced sensitivity as compared to that provided by a readout of the electrical signal from the CNT layer alone. In turn, the chemiresistive response was improved, both in terms of selectivity and sensitivity, by operating the system under illumination, as the photo-induced charges at the junction increase the p-doping of CNTs making them more sensitive to NH3 and less to NO2.

2.
Nanotechnology ; 28(3): 035502, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27966471

ABSTRACT

The gas response of single-wall carbon nanotubes (SWCNT) functionalized with indium tin oxide (ITO) nanoparticles (NP) has been studied at room temperature and an enhanced sensitivity to ammonia and nitrogen dioxide is demonstrated. The higher sensitivity in the functionalized sample is related to the creation of nano-heterojunctions at the interface between SWCNT bundles and ITO NP. Furthermore, the different response of the two devices upon NO2 exposure provides a way to enhance also the selectivity. This behavior is rationalized by considering a gas sensing mechanism based on the build-up of space-charge layers at the junctions. Finally, full recovery of the signal after exposure to NO2 is achieved by UV irradiation for the functionalized sample, where the ITO NP can play a role to hinder the poisoning effects on SWCNT due to NO2 chemisorption.

3.
ACS Appl Mater Interfaces ; 7(18): 9436-44, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25902284

ABSTRACT

Hybrid carbon nanotube-silicon (CNT-Si) junctions have been investigated by angle resolved photoemission spectroscopy (AR-XPS) with the aim to clarify the effects of a nonstoichiometric silicon oxide buried interface on the overall cell efficiency. A complex silicon oxide interface has been clearly identified and its origin and role in the heterojunction have been probed by exposing the cells to hydrofluoric (HF) and nitric (HNO3) acid. Real-time monitoring of the cell efficiencies during the steps following acid exposure (up to 1 week after etching) revealed a correlation between the thickness and chemical state of the oxide layer and the cell efficiencies. By matching the AR-XPS and Raman spectroscopy with the electrical response data it has been possible to discriminate the effects on the cell efficiency of the buried SiO(x) interface from those related to CNT acid doping. The overall cell behavior recorded for different thicknesses of the SiO(x) interface indicates that the buried oxide layer is likely acting as a passivating/inversion layer in a metal-insulator-semiconductor junction.

SELECTION OF CITATIONS
SEARCH DETAIL