Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Int J Radiat Oncol Biol Phys ; 116(5): 1163-1174, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-36792018

PURPOSE: Victims of acute radiation exposure are susceptible to hematopoietic toxicity due to bone marrow damage and loss of mature blood elements. Here, we evaluated cord blood-derived endothelial progenitor cells (CB-EPCs) as a potential cellular therapy for mitigation of hematologic acute radiation syndrome. CB-EPCs express endothelial cell markers and maintain their growth characteristics beyond 10+ passages without diminishing their doubling capacity. Further, CB-EPCs can be cryopreserved in vapor-phase liquid nitrogen and easily recovered for propagation, making them an attractive nonimmunogenic cellular therapy for off-the-shelf use. Importantly, we show CB-EPCs have the capacity to potently expand adult human bone marrow hematopoietic progenitor cells both in vitro and in vivo. METHODS AND MATERIALS: To demonstrate the role of CB-EPCs in promoting in vivo human immune reconstitution after irradiation, we employed a novel humanized mouse model established by transplant of CD34+ bone marrow cells from 9 unique adult organ donors into immunocompromised NSG-SGM3 mice. The response of the humanized immune system to ionizing irradiation was then tested by exposure to 1 Gy followed by subcutaneous treatment of CB-EPCs, Food and Drug Administration-approved growth factor pegfilgrastim (0.3 mg/kg), or saline. RESULTS: At day 7, total human bone marrow was decreased by 80% in irradiated controls. However, treatment with either growth factor pegfilgrastim or CB-EPCs increased recovery of total human bone marrow by 2.5-fold compared with saline. Notably, CB-EPCs also increased recovery of both human CD34+ progenitors by 5-fold and colony-forming capacity by 3-fold versus saline. Additionally, CB-EPCs promoted recovery of endogenous bone marrow endothelial cells as observed by both increased vessel area and length compared with saline. CONCLUSIONS: These findings indicate the feasibility of using humanized mice engrafted with adult bone marrow for radiation research and the development of CB-EPCs as an off-the-shelf cellular therapy for mitigation of hematologic acute radiation syndrome.


Acute Radiation Syndrome , Endothelial Progenitor Cells , Hematopoietic Stem Cell Transplantation , Adult , Humans , Mice , Animals , Bone Marrow , Hematopoietic Stem Cells/physiology , Fetal Blood/metabolism , Acute Radiation Syndrome/metabolism , Bone Marrow Cells , Intercellular Signaling Peptides and Proteins/metabolism , Hematopoietic Stem Cell Transplantation/methods
2.
Exp Hematol Oncol ; 11(1): 83, 2022 Oct 31.
Article En | MEDLINE | ID: mdl-36316713

BACKGROUND: Thioredoxin-1 (TXN1) is one of the major cellular antioxidants in mammals and is involved in a wide range of physiological cellular responses. However, little is known about the roles and the underlying molecular mechanisms of TXN1 in the regulation of hematopoietic stem/progenitor cells (HSPCs). METHODS: TXN1 conditional knockout mice (ROSA-CreER-TXN1fl/fl) and TXN1fl/fl control mice were used. The mice were treated with tamoxifen and the number and biological functions of HSPCs were measured by flow cytometry, PCR and western blot. Limiting dilution competitive transplantation with sorted HSCs and serial transplantations were performed to assess the effects of TXN1 knockout on HSC self-renewal and long-term reconstitutional capacity. RNA sequencing (RNA-seq) was performed to investigate the downstream molecular pathways of TXN1 deletion in murine HSPCs. CRISPR/Cas9 knockout experiments were performed in vitro in EML murine hematopoietic stem/progenitor cell line to investigate the effects of TXN1 and/or TP53 deletion on cell survival, senescence and colony forming units. TP53 protein degradation assay, CHiP PCR and PGL3 firefly/renilla reporter assay were performed. The effects of TXN1 on various molecular pathways relevant to HSC radiation protection were examined in vitro and in vivo. RESULTS: TXN1-TP53 tumor suppressor axis regulates HSPC biological fitness. Deletion of TXN1 in HSPCs using in vivo and in vitro models activates TP53 signaling pathway, and attenuates HSPC capacity to reconstitute hematopoiesis. Furthermore, we found that knocking out of TXN1 renders HSPCs more sensitive to radiation and treatment with recombinant TXN1 promotes the proliferation and expansion of HSPCs. CONCLUSIONS: Our findings suggest that TXN1-TP53 axis acts as a regulatory mechanism in HSPC biological functions. Additionally, our study demonstrates the clinical potential of TXN1 for enhancing hematopoietic recovery in hematopoietic stem cell transplant and protecting HSPCs from radiation injury.

3.
Mol Cancer Res ; 19(5): 886-899, 2021 05.
Article En | MEDLINE | ID: mdl-33514658

The ERBB2 proto-oncogene is associated with an aggressive phenotype in breast cancer. Its role in hematologic malignancies is incompletely defined, in part because ERBB2 is not readily detected on the surface of cancer cells. We demonstrate that truncated ERBB2, which lacks the extracellular domain, is overexpressed on primary CD34+ myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cells compared with healthy hematopoietic cells. This overexpression of ERBB2 is associated with aberrant, oncogenic signaling with autophosphorylation of multiple tyrosine sites. Like in breast cancers, ERBB2 can exist as truncated isoforms p95ERBB2 and p110ERBB2 in MDS and AML. Neutralization of ERBB2 signaling with ERBB2 tyrosine kinase inhibitors (i.e., lapatinib, afatinib, and neratinib) increases apoptotic cell death and reduces human engraftment of MDS cells in mice at 21 weeks posttransplantation. Inhibition of ERBB2 modulates the expression of multiple pro- and anti-apoptotic mitochondrial proteins, including B-cell lymphoma 2 (BCL2). Dual blockade with ERBB2 and BCL2 inhibitors triggers additional reductions of BCL2 phosphorylation and myeloid cell leukemia-1 (MCL1) expression compared with single drug treatment. Dual therapy was synergistic at all tested doses, with a dose reduction index of up to 29 for lapatinib + venetoclax compared with venetoclax alone. Notably, these agents operated together and shifted cancer cells to a pro-apoptotic phenotype, resulting in increased mitochondrial cytochrome c release and activated caspase-3-mediated cell death. IMPLICATIONS: These findings warrant study of ERBB2 and BCL2 combination therapy in patients with MDS and AML. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/5/886/F1.large.jpg.


Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Receptor, ErbB-2/antagonists & inhibitors , Animals , Apoptosis , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor, ErbB-2/metabolism
4.
Stem Cell Reports ; 13(1): 76-90, 2019 07 09.
Article En | MEDLINE | ID: mdl-31155503

Hematopoietic stem and progenitor cells (HSPCs) depend on regulatory cytokines from the marrow microenvironment. From an unbiased cytokine screen of murine marrow supernatants, we identified C-C motif chemokine ligand 5 (CCL5) as an endothelial cell-secreted hematopoietic growth factor. Following treatment with CCL5, hematopoietic regeneration is accelerated and survival is prolonged after radiation. In mice with deletion of Ccr5, hematopoietic regeneration is delayed compared to control mice. Deletion of Ccr5 specifically in hematopoietic cells was sufficient to delay regeneration, while the deletion of Ccr5 in stromal/endothelial cells was not. Mechanistically, CCL5 promotes hematopoietic cell cycling and cell survival. Like murine hematopoietic cells, human hematopoietic cells (cord blood, healthy marrow, and peripheral blood) increase CCR5 expression after radiation exposure to promote cell survival. These data establish that CCL5 and CCR5 signaling play critical roles in hematopoietic regeneration and could serve as therapeutic targets to shorten the duration of myelosuppression.


Hematopoiesis/radiation effects , Hematopoietic Stem Cells/metabolism , Radiation, Ionizing , Receptors, CCR5/metabolism , Signal Transduction , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow/radiation effects , Cell Cycle/genetics , Cell Cycle/radiation effects , Cell Survival/genetics , Cell Survival/radiation effects , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Dose-Response Relationship, Radiation , Gene Expression , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/radiation effects , Humans , Immunophenotyping , Mice , Receptors, CCR5/genetics , Signal Transduction/radiation effects
5.
Clin Cancer Res ; 25(13): 4155-4167, 2019 07 01.
Article En | MEDLINE | ID: mdl-30952643

PURPOSE: Myelodysplastic syndrome (MDS) is associated with a dysregulated innate immune system. The purpose of this study was to determine whether modulation of the innate immune system via high mobility group box-1 (HMGB1) could reduce cell viability in MDS. EXPERIMENTAL DESIGN: We quantified HMGB1 in an MDS cell line MDS-L and in primary MDS cells compared with nonmalignant hematopoietic cells. We performed loss-of-function studies of HMGB1 using pooled siRNAs and a small-molecule inhibitor sivelestat compared with standard chemotherapy. We measured levels of engraftment of MDS-L cells in NOD-scidIL2Rgnull (NSG) mice following treatment with sivelestat. Mechanistically, we interrogated cell survival pathways and 45 targets within the NFκB pathway using both protein analysis and a proteome profiler array. RESULTS: We discovered that HMGB1 had increased expression in both MDS-L cells and in primary CD34+ MDS cells compared with healthy CD34+ hematopoietic cells. Sivelestat impaired MDS cell expansion, increased cellular death, and spared healthy hematopoietic cells. MDS-L marrow engraftment is reduced significantly at 17 weeks following treatment with sivelestat compared with control mice. Treatment of CD34+ MDS cells with sivelestat and azacitidine or decitabine was additive to increase apoptotic cell death compared with chemotherapy alone. Sivelestat promoted apoptosis with increased expression of PUMA, activated caspase 3, and increased DNA double-strand breaks. Inhibition of HMGB1 reduced levels of Toll-like receptors (TLR) and suppressed activation of NFκB in MDS-L cells. CONCLUSIONS: Inhibition of HMGB1 could promote MDS cell death and alter innate immune responses via suppression of NFκB pathways.


HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/metabolism , Myelodysplastic Syndromes/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , DNA Breaks, Double-Stranded , Disease Susceptibility , Gene Expression , Gene Expression Profiling , HMGB1 Protein/genetics , Humans , Immunity, Innate , Immunohistochemistry , Immunophenotyping , Mice , Mice, Knockout , Mutation , Myelodysplastic Syndromes/etiology , NF-kappa B/metabolism , Toll-Like Receptors/metabolism
6.
Int J Radiat Oncol Biol Phys ; 104(2): 291-301, 2019 06 01.
Article En | MEDLINE | ID: mdl-30763662

PURPOSE: Extracellular vesicles (EVs) are shed vesicles that bear a combination of nucleic acids and proteins. EVs are becoming recognized as a mode of cell-to-cell communication. Because hematopoietic stem cells reside in proximity to endothelial cells (ECs), we investigated whether EC-derived EVs could regulate hematopoietic stem cell regeneration after ionizing radiation. METHODS AND MATERIALS: We generated EVs derived from primary murine marrow ECs. We sought to determine the response of irradiated hematopoietic stem and progenitor cells to syngeneic or allogeneic EVs in culture assays. Starting 24 hours after either sublethal or lethal irradiation, mice were treated with EVs or saline or cultured primary marrow endothelial cells to determine the hematopoietic response in vivo. RESULTS: We demonstrate that EVs bear nuclear material and express EC-specific markers. Treatment with EVs promoted cell expansion and increased the number of colony-forming units compared to irradiated, hematopoietic cell cultures treated with cytokines alone. After total body irradiation, EV-treated mice displayed preserved marrow cellularity, marrow vessel integrity, and prolonged overall survival compared with controls treated with saline. Treatment of irradiated hematopoietic stem/progenitor cells (HSPCs) with EVs from different genetic strains showed results similar to treatment of HSPCs from syngeneic EVs. Mechanistically, treatment of irradiated HSPCs with EVs resulted in decreased levels of annexin V+ apoptotic cell death, which is mediated in part by tissue inhibitor of metalloproteinase-1. CONCLUSIONS: Our findings show that syngeneic or allogeneic EVs could serve as cell-derived therapy to deliver physiologic doses of nucleic acids and growth factors to hematopoietic cells to accelerate hematopoietic regeneration.


Endothelial Cells , Extracellular Vesicles , Hematopoietic Stem Cells/physiology , Hematopoietic Stem Cells/radiation effects , Radiation Injuries/therapy , Regeneration , Animals , Annexin A5/metabolism , Apoptosis , Cell Communication , Cell Proliferation , Cell Survival , Extracellular Vesicles/physiology , Mesenchymal Stem Cell Transplantation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Tissue Inhibitor of Metalloproteinase-1/analysis , Tissue Inhibitor of Metalloproteinase-1/metabolism , Whole-Body Irradiation
7.
Stem Cells ; 36(2): 252-264, 2018 02.
Article En | MEDLINE | ID: mdl-29086459

Hematopoietic regeneration following chemotherapy may be distinct from regeneration following radiation. While we have shown that epidermal growth factor (EGF) accelerates regeneration following radiation, its role following chemotherapy is currently unknown. We sought to identify EGF as a hematopoietic growth factor for chemotherapy-induced myelosuppression. Following 5-fluorouracil (5-FU), EGF accelerated hematopoietic stem cell regeneration and prolonged survival compared with saline-treated mice. To mitigate chemotherapy-induced injury to endothelial cells in vivo, we deleted Bax in VEcadherin+ cells (VEcadherinCre;BaxFL/FL mice). Following 5-FU, VEcadherinCre;BaxFL/FL mice displayed preserved hematopoietic stem/progenitor content compared with littermate controls. 5-FU and EGF treatment resulted in increased cellular proliferation, decreased apoptosis, and increased DNA double-strand break repair by non-homologous end-joining recombination compared with saline-treated control mice. When granulocyte colony stimulating factor (G-CSF) is given with EGF, this combination was synergistic for regeneration compared with either G-CSF or EGF alone. EGF increased G-CSF receptor (G-CSFR) expression following 5-FU. Conversely, G-CSF treatment increased both EGF receptor (EGFR) and phosphorylation of EGFR in hematopoietic stem/progenitor cells. In humans, the expression of EGFR is increased in patients with colorectal cancer treated with 5-FU compared with cancer patients not on 5-FU. Similarly, EGFR signaling is responsive to G-CSF in humans in vivo with both increased EGFR and phospho-EGFR in healthy human donors following G-CSF treatment compared with donors who did not receive G-CSF. These data identify EGF as a hematopoietic growth factor following myelosuppressive chemotherapy and that dual therapy with EGF and G-CSF may be an effective method to accelerate hematopoietic regeneration. Stem Cells 2018;36:252-264.


Epidermal Growth Factor/pharmacology , Granulocyte Colony-Stimulating Factor/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , ErbB Receptors/metabolism , Fluorouracil/pharmacology , Hematopoiesis/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects
...