ABSTRACT
We report the evolution of the magnetic properties of Ce2Rh1-xIrxIn8-yCdy single crystals. In particular, for Ce2Rh0.5Ir0.5In8 (TN=2.0K) and Ce2Rh0.5Ir0.5In7.79Cd0.21 (TN=4.2K), we have solved the magnetic structure of these compounds using single-crystal neutron magnetic diffraction experiments. Taking the magnetic structure of the Ce2RhIn8 heavy-fermion antiferromagnet as a reference, we have identified no changes in the q=12,12,0 magnetic wave vector; however, the direction of the ordered Ce3+ moments rotates toward the ab plane, under the influence of both dopants. By constraining the analysis of the crystalline electric field (CEF) with the experimental ordered moment's direction and high-temperature magnetic-susceptibility data, we have used a mean-field model with tetragonal CEF and exchange interactions to gain insight into the CEF scheme and anisotropy of the CEF ground-state wave function when Cd and Ir are introduced into Ce2RhIn8. Consistent with previous work, we find that Cd doping in Ce2RhIn8 tends to rotate the magnetic moment toward the ab plane and lower the energy of the CEF excited states' levels. Interestingly, the presence of Ir also rotates the magnetic moment towards the ab plane although its connection to the CEF overall splitting evolution for the y = 0 samples may not be straightforward. These findings may shed light on the origin of the disordered spin-glass phase on the Ir-rich side of the phase diagram and also indicate that the Ce2MIn8 compounds may not follow exactly the same Rh-Ir CEF effects trend established for the Ce2MIn5 compounds.
ABSTRACT
We have performed X-ray powder diffraction, magnetization, electrical resistivity, heat capacity and inelastic neutron scattering (INS) to investigate the physical properties of the intermetallic series of compounds CeCuBi2-xSbx. These compounds crystallize in a tetragonal structure with space group P4∕nmm and present antiferromagnetic transition temperatures ranging from 3.6 K to 16 K. Remarkably, the magnetization easy axis changed along the series, which is closely related to the variations of the tetragonal crystalline electric field (CEF) parameters. This evolution was analyzed using a mean field model, which included an anisotropic nearest-neighbor interactions and the tetragonal CEF Hamiltonian. We obtained the CEF parameters by fitting the magnetic susceptibility data with the constraints given by the INS measurements. More broadly, we discuss how this CEF evolution can affect the Kondo physics and the search for a superconducting state in this family.
ABSTRACT
We report the electronic and magnetic properties of stoichiometric CeAuBi2 single crystals. At ambient pressure, CeAuBi2 orders antiferromagnetically below a Néel temperature (TN ) of 19 K. Neutron diffraction experiments revealed an antiferromagnetic propagation vector τ ^ = [ 0 , 0 , 1 ∕ 2 ] , which doubles the paramagnetic unit cell along the c axis. At low temperatures several metamagnetic transitions are induced by the application of fields parallel to the c axis, suggesting that the magnetic structure of CeAuBi2 changes as a function of field. At low temperatures, a linear positive magnetoresistance may indicate the presence of band crossings near the Fermi level. Finally, the application of external pressure favors the antiferromagnetic state, indicating that the 4f electrons become more localized.
ABSTRACT
Raman scattering, synchrotron x-ray diffraction, specific heat, resistivity and magnetic susceptibility measurements were performed in Sr(Fe1-x Co x )2As2 [[Formula: see text]] single crystals with superconducting critical temperature [Formula: see text] K and two additional transitions at 132 and 152 K observed in both specific heat and resistivity data. A quasielastic Raman signal with B 2g symmetry (tetragonal cell) associated with electronic nematic fluctuations is observed. Crucially, this signal shows maximum intensity at [Formula: see text] K, marking the nematic transition temperature. X-ray diffraction shows evidence of coexisting orthorhombic and tetragonal domains between [Formula: see text] and [Formula: see text] â¼ 152 K, implying that precursor orthorhombic domains emerge over an extended temperature range above [Formula: see text]. While the height of the quasielastic Raman peak is insensitive to [Formula: see text], the temperature-dependence of the average nematic fluctuation rate indicates a slowing down of the nematic fluctuations inside the precursor orthorhombic domains. These results are analogous to those previously reported for the LaFeAsO parent oxypnictide (Kaneko et al 2017 Phys. Rev. B 96 014506). We propose a scenario where the precursor orthorhombic phase may be generated within the electronically disordered regime ([Formula: see text]) as long as the nematic fluctuation rate is sufficiently small in comparison to the optical phonon frequency range. In this regime, the local atomic structure responds adiabatically to the electronic nematic fluctuations, creating a net of orthorhombic clusters that, albeit dynamical for [Formula: see text], may be sufficiently dense to sustain long-range phase coherence in a diffraction process up to [Formula: see text].
ABSTRACT
The aim of this study was to analyse the oxidative and anti-oxidant status in serum samples from dairy cows naturally infected by Dictyocaulus viviparus and its relation with pathological analyses. The diagnosis of the disease was confirmed by necropsy of one dairy cow with heavy infection by the parasite in the lungs and bronchi. Later, blood and faeces were collected from another 22 cows from the same farm to measure reactive oxygen species (ROS) levels, thiobarbituric acid-reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD) activities on day 0 (pre-treatment) and day 10 (post-treatment with eprinomectin). Faecal examination confirmed the infection in all lactating cows. However, the number of D. viviparus larvae per gram of faeces varied between animals. Cows showed different degrees of severity according to respiratory clinical signs of the disease (cough and nasal secretion). Further, they were classified and divided into two groups: those with mild (n = 10) and severe disease (n = 12). Increased levels of TBARS (P < 0.001), ROS (P = 0.002) and SOD activity (P < 0.001), as well as reduced CAT activity (P < 0.001) were observed in cows with severe clinical signs of the disease compared to those with mild clinical signs. Eprinomectin treatment (day 10) caused a reduction of ROS levels (P = 0.006) and SOD activity (P < 0.001), and an increase of CAT activity (P = 0.05) compared to day 0 (pre-treatment). TBARS levels did not differ with treatment (P = 0.11). In summary, increased ROS production and lipid peroxidation altered CAT and SOD activities, as an adaptive response against D. viviparus infection, contributing to the occurrence of oxidative stress and severity of the disease. Treatment with eprinomectin eliminated the infection, and thus minimized oxidative stress in dairy cows.
Subject(s)
Cattle Diseases/pathology , Dictyocaulus Infections/pathology , Dictyocaulus/isolation & purification , Oxidative Stress , Animals , Bronchi/parasitology , Catalase/blood , Cattle , Cattle Diseases/parasitology , Feces/parasitology , Lung/parasitology , Parasite Egg Count , Reactive Oxygen Species/blood , Superoxide Dismutase/blood , Thiobarbituric Acid Reactive Substances/analysisABSTRACT
The ultrastructure of the reproductive gland, dorsal body (DB), of Megalobulimus abbreviatus was analysed. Electron microscope immunohistochemistry was used to detect FMRFamide-like peptides in the nerve endings within this gland. Nerve backfilling was used in an attempt to identify the neurons involved in this innervation. In M. abbreviatus, the DB has a uniform appearance throughout their supraesophageal and subesophageal portions. Dorsal body cells have several features in common with steroid-secreting gland cells, such as the presence of many lipid droplets, numerous mitochondria with tubular cristae and a developed smooth endoplasmic reticulum cisternae. Throughout the DB in M. abbreviatus numerous axonal endings were seen to be in contact with the DB cells exhibiting a synaptic-like structure. The axon terminals contained numerous electron-dense and scanty electron-lucid vesicles. In addition, the DB nerve endings exhibited FMRFamide immunoreactive vesicles. Injection of neural tracer into the DB yielded retrograde labelling of neurons in the metacerebrum lobe of the cerebral ganglia and in the parietal ganglia of the subesophageal ganglia complex. The possibility that some of these retrograde-labelled neurons might be FMRFamide-like neurons that may represent a neural control to the DB in M. abbreviatus is discussed.