Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Entropy (Basel) ; 25(7)2023 Jul 17.
Article En | MEDLINE | ID: mdl-37510019

The properties of cardio-respiratory coupling (CRC) are affected by various pathological conditions related to the cardiovascular and/or respiratory systems. In heart failure, one of the most common cardiac pathological conditions, the degree of CRC changes primarily depend on the type of heart-rhythm alterations. In this work, we investigated CRC in heart-failure patients, applying measures from information theory, i.e., Granger Causality (GC), Transfer Entropy (TE) and Cross Entropy (CE), to quantify the directed coupling and causality between cardiac (RR interval) and respiratory (Resp) time series. Patients were divided into three groups depending on their heart rhythm (sinus rhythm and presence of low/high number of ventricular extrasystoles) and were studied also after cardiac resynchronization therapy (CRT), distinguishing responders and non-responders to the therapy. The information-theoretic analysis of bidirectional cardio-respiratory interactions in HF patients revealed the strong effect of nonlinear components in the RR (high number of ventricular extrasystoles) and in the Resp time series (respiratory sinus arrhythmia) as well as in their causal interactions. We showed that GC as a linear model measure is not sensitive to both nonlinear components and only model free measures as TE and CE may quantify them. CRT responders mainly exhibit unchanged asymmetry in the TE values, with statistically significant dominance of the information flow from Resp to RR over the opposite flow from RR to Resp, before and after CRT. In non-responders this asymmetry was statistically significant only after CRT. Our results indicate that the success of CRT is related to corresponding information transfer between the cardiac and respiratory signal quantified at baseline measurements, which could contribute to a better selection of patients for this type of therapy.

2.
Bioengineering (Basel) ; 10(2)2023 Jan 31.
Article En | MEDLINE | ID: mdl-36829674

Due to the fact that respiratory breath-to-breath and cardiac intervals between two successive R peaks (BBI and RRI, respectively) are not temporally concurrent, in a previous paper, we proposed a method to calculate both the integer and non-integer parts of the pulse respiration quotient (PRQ = BBI/RRI = PRQint + b1 + b2), b1 and b2 being parts of the border RRIs for each BBI. In this work, we study the correlations between BBI and PRQ, as well as those between BBI and mean RRI within each BBI (mRRI), on a group of twenty subjects in four conditions: in supine and standing positions, in combination with spontaneous and slow breathing. Results show that the BBI vs. PRQ correlations are positive; whereas the breathing regime had little or no effect on the linear regression slopes, body posture did. Two types of scatter plots were obtained with the BBI vs. mRRI correlations: one showed points aggregated around the concurrent PRQint lines, while the other showed randomly distributed points. Five out of six of the proposed aggregation measures confirmed the existence of these two cardio-respiratory coupling regimes. We also used b1 to study the positions of R pulses relative to the respiration onsets and showed that they were more synchronous with sympathetic activation. Overall, this method should be used in different pathological states.

3.
Front Physiol ; 13: 946613, 2022.
Article En | MEDLINE | ID: mdl-36620213

Objective: In this research we explored the (homeo)dynamic character of cardiorespiratory coupling (CRC) under the influence of different body posture and breathing regimes. Our tool for it was the pulse respiration quotient (PRQ), representing the number of heartbeat intervals per breathing cycle. We obtained non-integer PRQ values using our advanced Matlab® algorithm and applied it on the signals of 20 healthy subjects in four conditions: supine position with spontaneous breathing (Supin), standing with spontaneous breathing (Stand), supine position with slow (0.1 Hz) breathing (Supin01) and standing with slow (0.1 Hz) breathing (Stand01). Main results: Linear features of CRC (in PRQ signals) were dynamically very sensitive to posture and breathing rhythm perturbations. There are obvious increases in PRQ mean level and variability under the separated and joined influence of orthostasis and slow (0.1 Hz) breathing. This increase was most pronounced in Stand01 as the state of joint influences. Importantly, PRQ dynamic modification showed greater sensitivity to body posture and breathing regime changes than mean value and standard deviation of heart rhythm and breathing rhythm. In addition, as a consequence of prolonged supine position, we noticed the tendency to integer quantization of PRQ (especially after 14 min), in which the most common quantization number was 4:1 (demonstrated in other research reports as well). In orthostasis and slow breathing, quantization can also be observed, but shifted to other values. We postulate that these results manifest resonance effects induced by coupling patterns from sympathetic and parasympathetic adjustments (with the second as dominant factor). Significance: Our research confirms that cardiorespiratory coupling adaptability could be profoundly explored by precisely calculated PRQ parameter since cardiorespiratory regulation in healthy subjects is characterized by a high level of autonomic adaptability (responsiveness) to posture and breathing regime, although comparisons with pathological states has yet to be performed. We found Stand01 to be the most provoking state for the dynamic modification of PRQ (cardiorespiratory inducement). As such, Stand01 has the potential of using for PRQ tuning by conditioning the cardiorespiratory autonomic neural networks, e.g., in the cases where PRQ is disturbed by environmental (i.e., microgravity) or pathologic conditions.

4.
Entropy (Basel) ; 23(9)2021 Aug 30.
Article En | MEDLINE | ID: mdl-34573751

In this study, the effect of cardiac resynchronization therapy (CRT) on the relationship between the cardiovascular and respiratory systems in heart failure subjects was examined for the first time. We hypothesized that alterations in cardio-respiratory interactions, after CRT implantation, quantified by signal complexity, could be a marker of a favorable CRT response. Sample entropy and scaling exponents were calculated from synchronously recorded cardiac and respiratory signals 20 min in duration, collected in 47 heart failure patients at rest, before and 9 months after CRT implantation. Further, cross-sample entropy between these signals was calculated. After CRT, all patients had lower heart rate and CRT responders had reduced breathing frequency. Results revealed that higher cardiac rhythm complexity in CRT non-responders was associated with weak correlations of cardiac rhythm at baseline measurement over long scales and over short scales at follow-up recording. Unlike CRT responders, in non-responders, a significant difference in respiratory rhythm complexity between measurements could be consequence of divergent changes in correlation properties of the respiratory signal over short and long scales. Asynchrony between cardiac and respiratory rhythm increased significantly in CRT non-responders during follow-up. Quantification of complexity and synchrony between cardiac and respiratory signals shows significant associations between CRT success and stability of cardio-respiratory coupling.

5.
Entropy (Basel) ; 22(9)2020 Sep 18.
Article En | MEDLINE | ID: mdl-33286811

It is known that in pathological conditions, physiological systems develop changes in the multiscale properties of physiological signals. However, in real life, little is known about how changes in the function of one of the two coupled physiological systems induce changes in function of the other one, especially on their multiscale behavior. Hence, in this work we aimed to examine the complexity of cardio-respiratory coupled systems control using multiscale entropy (MSE) analysis of cardiac intervals MSE (RR), respiratory time series MSE (Resp), and synchrony of these rhythms by cross multiscale entropy (CMSE) analysis, in the heart failure (HF) patients and healthy subjects. We analyzed 20 min of synchronously recorded RR intervals and respiratory signal during relaxation in the supine position in 42 heart failure patients and 14 control healthy subjects. Heart failure group was divided into three subgroups, according to the RR interval time series characteristics (atrial fibrillation (HFAF), sinus rhythm (HFSin), and sinus rhythm with ventricular extrasystoles (HFVES)). Compared with healthy control subjects, alterations in respiratory signal properties were observed in patients from the HFSin and HFVES groups. Further, mean MSE curves of RR intervals and respiratory signal were not statistically different only in the HFSin group (p = 0.43). The level of synchrony between these time series was significantly higher in HFSin and HFVES patients than in control subjects and HFAF patients (p < 0.01). In conclusion, depending on the specific pathologies, primary alterations in the regularity of cardiac rhythm resulted in changes in the regularity of the respiratory rhythm, as well as in the level of their asynchrony.

6.
J Med Biochem ; 39(1): 60-65, 2020 Jan 10.
Article En | MEDLINE | ID: mdl-32549779

BACKGROUND: In a rare Gaucher disease, reduced activity of lysosomal b-glucocerebrosidase incompletely blocks glucosphingolipid catabolism. Accumulation of the unhydrolyzed substrate glucosylceramide within lysosomes results in progressive, multisystem Gaucher disease, classified into three types. Both parkinsonism and peripheral neuropathy are observed in cases of putative non-neuronopathic type 1 disease. In the current study we investigated whether the peripheral neural response in type 1 Gaucher disease patients, with no neural manifestations is conditioned by the influence of sex hormones. METHODS: The catalytic activity of b-glucocerebrosidase in peripheral blood leukocytes was determined spectrofluorometrically. Direct sequencing of the GBA1 gene was performed. Somatosensory evoked potentials were recorded after electrical stimulation of the median nerve of both arms. Stimuli of 0.2 ms duration at a frequency of 5 Hz were used. Sex hormones were determined by radioimmunoassay using a gamma scintillation counter. RESULTS: Analysis of the somatosensory evoked potentials revealed significant differences in peak latencies on periphery between men and women in both control and type 1 Gaucher disease groups. Analysis by gender showed significant associations between latencies and sex hormones only in female patients: negative correlation between oestradiol concentration and N9 peak latency, and a strong negative correlation of testosterone levels with all peak latencies on the periphery (N9-N13). CONCLUSIONS: A relationship between testosterone concentrations and the latencies of potentials evoked on peripheral nerves exists only in females with type 1 Gaucher disease. We point out sexual dimorphism in the development of this entity.

7.
Front Physiol ; 11: 24, 2020.
Article En | MEDLINE | ID: mdl-32132926

Objective: We explored the physiological background of the non-linear operating mode of cardiorespiratory oscillators as the fundamental question of cardiorespiratory homeodynamics and as a prerequisite for the understanding of neurocardiovascular diseases. We investigated 20 healthy human subjects for changes using electrocardiac RR interval (RRI) and respiratory signal (Resp) Detrended Fluctuation Analysis (DFA, α1RRI, α2RRI, α1Resp, α2Resp), Multiple Scaling Entropy (MSERRI1-4, MSERRI5-10, MSEResp1-4, MSEResp5-10), spectral coherence (CohRRI-Resp), cross DFA (ρ1 and ρ2) and cross MSE (XMSE1-4 and XMSE5-10) indices in four physiological conditions: supine with spontaneous breathing, standing with spontaneous breathing, supine with 0.1 Hz breathing and standing with 0.1 Hz breathing. Main results: Standing is primarily characterized by the change of RRI parameters, insensitivity to change with respiratory parameters, decrease of CohRRI-Resp and insensitivity to change of in ρ1, ρ2, XMSE1-4, and XMSE5-10. Slow breathing in supine position was characterized by the change of the linear and non-linear parameters of both signals, reflecting the dominant vagal RRI modulation and the impact of slow 0.1 Hz breathing on Resp parameters. CohRRI-Resp did not change with respect to supine position, while ρ1 increased. Slow breathing in standing reflected the qualitatively specific state of autonomic regulation with striking impact on both cardiac and respiratory parameters, with specific patterns of cardiorespiratory coupling. Significance: Our results show that cardiac and respiratory short term and long term complexity parameters have different, state dependent patterns. Sympathovagal non-linear interactions are dependent on the pattern of their activation, having different scaling properties when individually activated with respect to the state of their joint activation. All investigated states induced a change of α1 vs. α2 relationship, which can be accurately expressed by the proposed measure-inter-fractal angle θ. Short scale (α1 vs. MSE1-4) and long scale (α2 vs. MSE5-10) complexity measures had reciprocal interrelation in standing with 0.1 Hz breathing, with specific cardiorespiratory coupling pattern (ρ1 vs. XMSE1-4). These results support the hypothesis of hierarchical organization of cardiorespiratory complexity mechanisms and their recruitment in ascendant manner with respect to the increase of behavioral challenge complexity. Specific and comprehensive cardiorespiratory regulation in standing with 0.1 Hz breathing suggests this state as the potentially most beneficial maneuver for cardiorespiratory conditioning.

8.
PLoS One ; 14(7): e0219281, 2019.
Article En | MEDLINE | ID: mdl-31276529

BACKGROUND: Recently we proposed a new method called generalized Poincaré plot (gPp) analysis which gave a new insight into the pattern of neurocaridac control. In this study we examined potential of gPp method to reveal changes in cardiac neural control in young athletes during three conditions: supine rest, running and relaxation, with respect to untrained subjects. METHODS: This method is based on the quantification of Pearson's correlation coefficients r(j, k), between symmetrical (j = k) and asymmetrical summed j previous and k following RR intervals up to the 100th order (j,k≤100). RESULTS: Differences between groups were obtained at all levels of this analysis. The main result is the significant difference of NAI, normalized index of asymmetry, between groups in running, which was originated in different positions of local maxima of r(j, k). Compared with untrained subjects, these findings indicate modified neural control and altered intrinsic heart rate behavior in athletes which are related to some kind of memory mechanism between RR intervals. CONCLUSION: Obtained results provide great potential of gPp method analysis in the recognition of changes in neurocardiac control in healthy subjects. Further studies are needed for identification of altered cardiac regulatory mechanisms whose background may be useful in the evaluation of genesis of athletes neurocardiovascular pathology.


Biometry/methods , Heart Rate/physiology , Heart/physiology , Adult , Athletes , Data Analysis , Humans , Male , Rest/physiology , Running/physiology , Young Adult
9.
Front Physiol ; 10: 570, 2019.
Article En | MEDLINE | ID: mdl-31139094

Heart failure (HF) is one of the most frequent heart diseases. It is usually characterized with structural and functional cardiac abnormalities followed by dysfunction of autonomic cardiac control. Current methods of heartbeat interval analysis are not capable to differentiate HF patients and some new differentiation of HF patients could be useful in the determination of the direction of their treatment. In this study, we examined potential of the ratio of the short-term and long-term scaling exponents (α 1 and α 2) to separate HF patients with similar level of reduced cardiac autonomic nervous system control and with no significant difference in age, left ventricular ejection fraction (LVEF) and NYHA class. Thirty-five healthy control subjects and 46 HF patients underwent 20 min of continuous supine resting ECG recording. The interbeat interval time series were analyzed using standardized power spectrum analysis, detrended fluctuation analysis method and standard Poincaré plot (PP) analysis with measures of asymmetry of the PP. Compared with healthy control group, in HF patients linear measures of autonomic cardiac control were statistically significantly reduced (p < 0.05), heart rate asymmetry was preserved (C up > C down, p < 0.01), and long-term scaling exponent α 2 was significantly higher. Cluster analysis of the ratio of short- and long-term scaling exponents showed capability of this parameter to separate four clusters of HF patients. Clusters were determined by interplay of presence of short-term and long-term correlations in interbeat intervals. Complementary measure, commonly accepted ratio of the PP descriptors, SD2/SD1, showed tendency toward statistical significance to separate HF patients in obtained clusters. Also, heart rate asymmetry was preserved only in two clusters. Finally, a multiple regression analysis showed that the ratio α 1/α 2 could be used as an integrated measure of cardiac dynamic with complex physiological background which, besides spectral components as measures of autonomic cardiac control, also involves breathing frequency and mechanical cardiac parameter, left ventricular ejection fraction.

10.
Front Physiol ; 9: 165, 2018.
Article En | MEDLINE | ID: mdl-29559923

We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals) and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin), with sinus rhythm and ventricular extrasystoles (HF-VES), and with permanent atrial fibrillation (HF-AF). We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF) there is no coherence between signals (p < 0.01), while in HF-Sin it is reduced (p < 0.05), compared with control subjects. In all heart failure groups causality between signals is diminished, but with significantly stronger causality of RR signal in respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the presence of atrial/ventricular arrhythmias and it could be revealed by complementary methods of time series analysis.

11.
Biomed Tech (Berl) ; 61(6): 657-663, 2016 Dec 01.
Article En | MEDLINE | ID: mdl-27824611

Rearranged origin of heart rhythm in patients with atrial fibrillation (AF) influences the regulation of the heart and consequently the respiratory rhythm, and the bidirectional interaction of these rhythms not documented. Hence, we examined coupling of the RR interval and the respiration (Resp) signal by coherence, Granger causality and the cross-sample entropy method of time series analysis in patients with AF and a healthy control group. In healthy subjects, the influence of respiration on cardiac rhythm was found as increased coherence at the breathing frequency (BF) range, significantly stronger interaction and synchrony from Resp to RR than from RR to Resp. On the contrary, in patients with AF, coherence at BF diminished, there were no causal interactions between signals in both directions, which resulted in equally great asynchrony between them. In AF, the absence of full functionality of the sinoatrial node, as an integrator of neural cardiac control, resulted in diminished vagal modulation of heart periods and consequently impaired bidirectional cardio-respiratory interaction.


Atrial Fibrillation/physiopathology , Heart Rate/physiology , Electrocardiography/methods , Entropy , Humans , Respiration
12.
Front Neurosci ; 10: 38, 2016.
Article En | MEDLINE | ID: mdl-26909018

Classical Poincaré plot is a standard way to measure nonlinear regulation of cardiovascular control. In our work we propose a generalized form of Poincaré plot where we track correlation between the duration of j preceding and k next RR intervals. The investigation was done in healthy subjects and patients with atrial fibrillation, by varying j,k ≤ 100. In cases where j = k, in healthy subjects the typical pattern was observed by "paths" that were substituting scatterplots and that were initiated and ended by loops of Poincaré plot points. This was not the case for atrial fibrillation patients where Poincaré plot had a simple scattered form. More, a typical matrix of Pearson's correlation coefficients, r(j,k), showed different positions of local maxima, depending on the subject's health condition. In both groups, local maxima were grouped into four clusters which probably determined specific regulatory mechanisms according to correlations between the duration of symmetric and asymmetric observed RR intervals. We quantified matrices' degrees of asymmetry and found that they were significantly different: distributed around zero in healthy, while being negative in atrial fibrillation. Also, Pearson's coefficients were higher in healthy than in atrial fibrillation or in signals with reshuffled intervals. Our hypothesis is that by this novel method we can observe heart rate regimes typical for baseline conditions and "defense reaction" in healthy subjects. These data indicate that neural control mechanisms of heart rate are operating in healthy subjects in contrast with atrial fibrillation, identifying it as the state of risk for stress-dependent pathologies. Regulatory regimes of heart rate can be further quantified and explored by the proposed novel method.

13.
Comput Biol Med ; 53: 291-6, 2014 Oct.
Article En | MEDLINE | ID: mdl-25194258

The measures of nonlinear properties of RR interval and QT interval time series are sensitive to physiologically- or pathologically-induced complexity/regularity changes, but were not used to estimate the effect of alcohol intake. We wanted to examine the potential of these measures to quantify the acute effect of a low dose of red wine in healthy subjects. In separate experiments, fourteen young volunteers drank 200ml of red wine and a control drink with equal concentration of ethanol. ECG in supine position was recorded 20min before and 60min after drink intake. RR interval and QT interval series were extracted from ECG and we calculated variability, scaling exponents (α1 and α2) and sample entropy (SampEn) for both series. Systolic and diastolic blood pressures (BP) were measured every 10min. The immediate effect of both the drinks was equal: HR, BP and QT variability exhibited a sudden increase and then a decrease. However, the prolonged effect of wine and the control drink was different. Wine decreased both BP (p<0.05) and reduced complexity of RR and QT series (increased scaling exponents and decreased SampEn). The control drink prolonged QT and RR intervals (p<0.05). These results point out that the nonlinear properties of RR and QT interval series could be used to differentiate the effect of wine and ethanol. Changes in RR and QT interval series induced by a low dose of red wine are more detectable by methods that quantify the structure of the series than by methods that quantify their variability.


Electrocardiography/drug effects , Heart Rate/drug effects , Wine , Adult , Analysis of Variance , Blood Pressure/drug effects , Healthy Volunteers , Humans , Male
14.
Med Eng Phys ; 36(12): 1577-84, 2014 Dec.
Article En | MEDLINE | ID: mdl-25199589

We examined the effects of gender and age in young and middle-aged subjects on the level of cardio-respiratory interaction by analyzing properties of cardiac, respiratory and cardiac-respiratory regulatory mechanisms under paced breathing. In 56 healthy subjects, ECG (RR interval) and respiratory signal were simultaneously acquired in supine position at paced (0.1-0.45 Hz, steps of 0.05 Hz) and spontaneous breathing. The participants were divided into gender matched group of young adults (19-25 years old) and middle-aged adults (35-44 years old). Power spectral analysis was applied on RR interval time series and spectral components in very low frequency (VLF), low frequency (LF) and high frequency (HF) ranges were computed. We also calculated sample entropy of RR interval series (SampEnRR), respiratory series (SampEnResp), and their cross-sample entropy (cross-SampEn). Under paced breathing, reduction of all spectral powers with age (p<0.05) is not gender dependent but reduction of some entropy measures is; SampEnRR and SampEnResp were lower only in men (p<0.05). In the middle-aged subjects, effect of gender on spectral measures is significant; males had lower HF (p < 0.05). Pattern of dependencies of SampEn and cross-SampEn on paced breathing frequency were significantly different in men (young vs. middle-aged, p = 0.001 and p = 0.037) and in middle-aged subjects (females vs. males, p = 0.011 and p = 0.008). In middle-aged males, lower entropy measures indicated reduced and less complex partial cardiac and respiratory control, and central cardio-respiratory control. In conclusion, in healthy middle-aged subjects changes in cardio-respiratory coupling are detectable only in males.


Aging/physiology , Heart Rate/physiology , Respiration , Sex Characteristics , Adult , Electrocardiography , Entropy , Female , Humans , Male , Nonlinear Dynamics , Signal Processing, Computer-Assisted , Supine Position/physiology , Young Adult
15.
Respir Physiol Neurobiol ; 203: 51-9, 2014 Nov 01.
Article En | MEDLINE | ID: mdl-25139803

Our aim was to model the dependence of respiratory sinus arrhythmia (RSA) on the respiratory waveform and to elucidate underlying mechanisms of cardiorespiratory coupling. In 30 subjects, RR interval and respiratory signal were recorded during spontaneous and paced (0.1Hz/0.15Hz) breathing and their relationship was modeled by a first order linear differential equation. This model has two parameters: a0 (related to the instantaneous degree of abdominal expansion) and a1 (referring to the speed of abdominal expansion). Assuming that a0 represents slowly adapting pulmonary stretch receptors (SARs) and a1 SARs in coordination with other stretch receptors and central integrative coupling; then pulmonary stretch receptors relaying the instantaneous lung volume are the major factor determining cardiovagal output during inspiration. The model's results depended on breathing frequency with the least error occurring during slow paced breathing. The role of vagal afferent neurons in cardiorespiratory coupling may relate to neurocardiovascular diseases in which weakened coupling among venous return, arterial pressure, heart rate and respiration produces cardiovagal instability.


Arrhythmia, Sinus/physiopathology , Heart Rate/physiology , Models, Biological , Respiration , Respiratory Mechanics/physiology , Adult , Blood Pressure , Computer Simulation , Electrocardiography , Female , Humans , Male , Pulmonary Stretch Receptors/physiology , Reproducibility of Results
16.
Comput Biol Med ; 43(9): 1114-9, 2013 Sep.
Article En | MEDLINE | ID: mdl-23930804

To investigate the role of lateral interactions, we quantified spontaneous contractions of whole and longitudinally cut rat´s portal vein in vitro. The disruption of the wall had no effect on basic frequency determined from spectra and complexity index (CI) calculated by multiscale entropy analysis. Endothelium was disrupted and nonfunctional in all samples. Considering amplitude, frequency and CI we identified two modes of contractions. Neither mode of contractions nor the effect of aminopyridine (4-AP) depended on the integrity of the wall. We concluded that contractions in vitro originate in smooth muscle cells without involvement of the endothelium and lateral interactions.


Endothelium, Vascular/physiology , Muscle Contraction/physiology , Portal Vein/physiology , Vasoconstriction/physiology , 4-Aminopyridine/pharmacology , Animals , Entropy , Muscle Contraction/drug effects , Potassium Channel Blockers/pharmacology , Rats , Rats, Inbred WKY , Vasoconstriction/drug effects
17.
Med Biol Eng Comput ; 48(9): 887-94, 2010 Sep.
Article En | MEDLINE | ID: mdl-20556663

We studied nonlinear dynamics underlying spontaneous rhythmical contractions of isolated rat portal vein. The signals were acquired at four different temperatures important in isolated blood vessels preparations: 4, 22, 37 and 40 degrees C. To characterize the system's nonlinearity, we calculated the largest Lyapunov exponent, sample entropy and scaling exponents. Evidence for nonlinearity was provided by analysis of surrogate data generated from the phase-randomized Fourier transform of the original sequences. Positive values of the largest Lyapunov exponent were obtained for the time series recorded under applied conditions, indicating that the system preserves its chaotic deterministic nature even far from the physiological temperature range. Scaling exponents revealed three distinctive regions with different correlation properties. The calculated measures that characterize the time series obtained at 4 degrees C were significantly different from those derived from data obtained at higher temperatures. System's dynamics becomes more complex or less predictable as temperature approaches physiological value. The computation of the largest Lyapunov exponent, sample entropy and correlation measures gave an insight into the complex dynamics of the isolated blood vessels rhythmicity. We identified different modes of rhythmical contractions of isolated rat portal vein which could improve understanding of possible control mechanisms in vivo.


Portal Vein/physiology , Vasoconstriction/physiology , Animals , Entropy , Muscle, Smooth, Vascular/physiology , Periodicity , Rats , Rats, Inbred WKY , Temperature
18.
Physiol Meas ; 29(4): 439-50, 2008 Apr.
Article En | MEDLINE | ID: mdl-18354245

The origin of heart rate variability (HRV) is largely in parasympathetic activity. The direct influence of sympathetic activity and other control mechanisms, especially at an increased HR, is not well understood. The objectives of the study were to investigate the influence of increasing HR on the properties of heartbeat interval (RR) series in young healthy subjects. ECG was recorded in 9 trained and 11 untrained young men during supine rest, standing, incremental running exercise and relaxation. During exercise, a breath-to-breath gas exchange was monitored. The RR time series analysis included the spectral analysis, detrended fluctuations analysis method and sample entropy (SampEn) calculation. During exercise, spectral powers were reduced dramatically in both groups. The dependence of short-term scaling exponent (alpha(1)) on the RR included a characteristic maximum, while SampEn for the same value of the RR had a minimum. The value of HR corresponding to the maximum of alpha(1) and minimum of SampEn (IHR) corresponded to the intrinsic HR obtained by an autonomic blockade. In trained subjects, the curves alpha(1) versus RR and SampEn versus RR were moved toward larger RR, compared with control. For HR values higher than IHR, alpha(1) decreased and SampEn increased. These results reveal that the complexity of the heart rhythm above intrinsic HR decreases with an increase in HR. We suggest that at the highest HR intrinsic heart control is reflected in the heart rhythm. We point out the possibility of developing a new non-invasive method for the determination of intrinsic HR from the curve alpha(1) versus RR.


Heart Rate/physiology , Physical Fitness/physiology , Adult , Anthropometry , Basketball/physiology , Data Interpretation, Statistical , Entropy , Exercise/physiology , Fourier Analysis , Humans , Male , Oxygen Consumption/physiology , Rest/physiology
19.
Eur Biophys J ; 37(7): 1247-52, 2008 Sep.
Article En | MEDLINE | ID: mdl-18210101

In this study, we investigate correlation properties of fluctuations in heart interbeat (RR) time series in a broad range of physiological and pathological conditions. Using detrended fluctuation analysis (DFA) method we determined short-term (alpha 1) and long-term (alpha 2) scaling exponent. In addition, we calculated standard deviation of RR intervals (SDRR) as the simplest variability measure. We found that the difference between alpha 1 and alpha 2 is related to RR interval length. At the shortest RR intervals, which correspond to extreme physiological and pathological conditions, we found the highest reduction of variability and the biggest difference between scaling exponents. In this case, DFA reveals a white noise over short scales (alpha 1 about 0.5) and strongly correlated noise over large scales (alpha 2 about 1.5). With an increase in RR interval, accompanied by increased variability (increase in parasympathetic control), the difference between alpha 1 and alpha 2 decreases. The difference between scaling exponents disappeared in a state of efficient autonomic control. We suggest that the complexity in heart rhythm is achieved through coupling between intrinsically controlled heart rhythm and autonomic control, and that the model of stochastic resonance mechanism could be applied to this system.


Heart Rate/physiology , Adult , Aged , Electrocardiography , Female , Heart Failure/physiopathology , Heart Transplantation , Humans , Male , Middle Aged , Time Factors
20.
Physiol Meas ; 27(10): 989-98, 2006 Oct.
Article En | MEDLINE | ID: mdl-16951458

The aim of this study was to compare the dependence of heart rate variability (HRV) on heart period (RR interval length) under different physiological and pathological states in order to detect changes in HR modulation. The dependence of HRV on the RR interval length in healthy elderly subjects, congestive heart failure (CHF) patients and one patient with a transplanted heart (T) was compared with healthy young subjects. Spectral powers, sample entropy (SampEn) and short-term fractal scaling exponent (alpha1) were determined from 24 h free-running recordings. For the same HR, HRV measures were different in different groups. In healthy subjects HRV measures depended on RR interval length and all spectral powers were highly correlated, although reduced in elderly subjects. SampEn at high HR was the most sensitive quantity to changes induced by aging. In disease, CHF and T, an achievable HR range was decreased, all spectral powers were reduced, but correlated, and the dependence of HRV measures on RR was lost. There was an evident difference in the dependence of nonlinear on linear measures between young subjects and all the other studied groups. In disease the reduction in autonomic control was associated with the decrease in short-range correlation and regularity in RR series. We have concluded that the analysis of HRV measures as functions of RR interval length can reveal important aspects of HR control that might be lost in averaging.


Aging/physiology , Heart Failure/physiopathology , Heart Rate/physiology , Heart/physiology , Parasympathetic Nervous System/physiology , Adult , Aged , Electrocardiography, Ambulatory , Female , Humans , Male , Middle Aged , Periodicity
...