Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 120
2.
J Inherit Metab Dis ; 46(5): 839-847, 2023 09.
Article En | MEDLINE | ID: mdl-37428623

Over the past two decades, the field of vitamin B6 -dependent epilepsies has evolved by the recognition of a growing number of gene defects (ALDH7A1, PNPO, ALPL, ALDH4A1, PLPBP as well as defects of the glycosylphosphatidylinositol anchor proteins) that all lead to reduced availability of pyridoxal 5'-phosphate, an important cofactor in neurotransmitter and amino acid metabolism. In addition, positive pyridoxine response has been observed in other monogenic defects such as MOCS2 deficiency or KCNQ2 and there may be more defects to be discovered. Most entities lead to neonatal onset pharmaco-resistant myoclonic seizures or even status epilepticus and pose an emergency to the treating physician. Research has unraveled specific biomarkers for several of these entities (PNPO deficiency, ALDH7A1 deficiency, ALDH4A1 deficiency, ALPL deficiency causing congenital hypophosphatasia and glycosylphosphatidylinositol anchoring defects with hyperphosphatasia), that can be detected in plasma or urine, while there is no biomarker to test for PLPHP deficiency. Secondary elevation of glycine or lactate was recognized as diagnostic pitfall. An algorithm for a standardized trial with vitamin B6 should be in place in every newborn unit in order not to miss these well-treatable inborn errors of metabolism. The Komrower lecture of 2022 provided me with the opportunity to tell the story about the conundrums of research into vitamin B6 -dependent epilepsies that kept some surprises and many novel insights into pathomechanisms of vitamin metabolism. Every single step had benefits for the patients and families that we care for and advocates for a close collaboration of clinician scientists with basic research.


Epilepsy , Vitamin B 6 , Infant, Newborn , Humans , Vitamin B 6/metabolism , Pyridoxine , Pyridoxal Phosphate , Epilepsy/diagnosis , Biomarkers , Vitamins
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Article En | MEDLINE | ID: mdl-36983033

X-linked adrenoleukodystrophy (X-ALD) is a rare inborn error of the peroxisomal metabolism caused by pathologic variants in the ATP-binding cassette transporter type D, member 1 (ABCD1) gene located on the X-chromosome. ABCD1 protein, also known as adrenoleukodystrophy protein, is responsible for transport of the very long chain fatty acids (VLCFA) from cytoplasm into the peroxisomes. Therefore, altered function or lack of the ABCD1 protein leads to accumulation of VLCFA in various tissues and blood plasma leading to either rapidly progressive leukodystrophy (cerebral ALD), progressive adrenomyeloneuropathy (AMN), or isolated primary adrenal insufficiency (Addison's disease). We report two distinct single nucleotide deletions in the ABCD1 gene, c.253delC [p.Arg85Glyfs*18] in exon 1, leading to both cerebral ALD and to AMN phenotype in one family, and c.1275delA [p.Phe426Leufs*15] in exon 4, leading to AMN and primary adrenal insufficiency in a second family. For the latter variant, we demonstrate reduced mRNA expression and a complete absence of the ABCD1 protein in PBMC. Distinct mRNA and protein expression in the index patient and heterozygous carriers does not associate with VLCFA concentration in plasma, which is in line with the absence of genotype-phenotype correlation in X-ALD.


Addison Disease , Adrenoleukodystrophy , Humans , Adrenoleukodystrophy/pathology , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Nucleotides/metabolism , Leukocytes, Mononuclear/metabolism , Phenotype , RNA, Messenger , Fatty Acids/metabolism
4.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article En | MEDLINE | ID: mdl-36675224

Even though the application of Next-Generation Sequencing (NGS) has significantly facilitated the identification of disease-associated mutations, the diagnostic rate of rare diseases is still below 50%. This causes a diagnostic odyssey and prevents specific treatment, as well as genetic counseling for further family planning. Increasing the diagnostic rate and reducing the time to diagnosis in children with unclear disease are crucial for a better patient outcome and improvement of quality of life. In many cases, NGS reveals variants of unknown significance (VUS) that need further investigations. The delineation of novel (lipid) biomarkers is not only crucial to prove the pathogenicity of VUS, but provides surrogate parameters for the monitoring of disease progression and therapeutic interventions. Lipids are essential organic compounds in living organisms, serving as building blocks for cellular membranes, energy storage and signaling molecules. Among other disorders, an imbalance in lipid homeostasis can lead to chronic inflammation, vascular dysfunction and neurodegenerative diseases. Therefore, analyzing lipids in biological samples provides great insight into the underlying functional role of lipids in healthy and disease statuses. The method of choice for lipid analysis and/or huge assemblies of lipids (=lipidome) is mass spectrometry due to its high sensitivity and specificity. Due to the inherent chemical complexity of the lipidome and the consequent challenges associated with analyzing it, progress in the field of lipidomics has lagged behind other omics disciplines. However, compared to the previous decade, the output of publications on lipidomics has increased more than 17-fold within the last decade and has, therefore, become one of the fastest-growing research fields. Combining multiple omics approaches will provide a unique and efficient tool for determining pathogenicity of VUS at the functional level, and thereby identifying rare, as well as novel, genetic disorders by molecular techniques and biochemical analyses.


Lipidomics , Metabolic Diseases , Child , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Lipids/chemistry , Precision Medicine , Quality of Life , Lipid Metabolism , Metabolic Diseases/diagnosis , Metabolic Diseases/genetics , Metabolic Diseases/therapy
5.
J Inherit Metab Dis ; 46(1): 129-142, 2023 01.
Article En | MEDLINE | ID: mdl-36225138

Deficiency of antiquitin (α-aminoadipic semialdehyde dehydrogenase), an enzyme involved in lysine degradation and encoded by ALDH7A1, is the major cause of vitamin B6 -dependent epilepsy (PDE-ALDH7A1). Despite seizure control with high dose pyridoxine (PN), developmental delay still occurs in approximately 70% of patients. We aimed to investigate metabolic perturbations due to possible previously unidentified roles of antiquitin, which may contribute to developmental delay, as well as metabolic effects of high dose pyridoxine supplementation reflecting the high doses used for seizure control in patients with PDE-ALDH7A1. Untargeted metabolomics by high resolution mass spectrometry (HRMS) was used to analyze plasma of patients with PDE-ALDH7A1 and two independently generated lines of cultured ReNcell CX human neuronal progenitor cells (NPCs) with CRISPR/Cas mediated antiquitin deficiency. Accumulation of lysine pathway metabolites in antiquitin-deficient NPCs and western-blot analysis confirmed knockdown of ALDH7A1. Metabolomics analysis of antiquitin-deficient NPCs in conditions of lysine restriction and PN supplementation identified changes in metabolites related to the transmethylation and transsulfuration pathways and osmolytes, indicating a possible unrecognized role of antiquitin outside the lysine degradation pathway. Analysis of plasma samples of PN treated patients with PDE-ALDH7A1 and antiquitin-deficient NPCs cultured in conditions comparable to the patient plasma samples demonstrated perturbation of metabolites of the gamma-glutamyl cycle, suggesting potential oxidative stress-related effects in PN-treated patients with PDE-ALDH7A1. We postulate that a model of human NPCs with CRISPR/Cas mediated antiquitin deficiency is well suited to characterize previously unreported roles of antiquitin, relevant to this most prevalent form of pyridoxine-dependent epilepsy.


Epilepsy , Pyridoxine , Humans , Pyridoxine/therapeutic use , Lysine/metabolism , Aldehyde Dehydrogenase , Epilepsy/metabolism , Seizures , Metabolomics
6.
Neuropediatrics ; 54(6): 422-425, 2023 Dec.
Article En | MEDLINE | ID: mdl-36577449

To describe a new phenotype and the diagnostic workup of a vitamin-B6-dependent epilepsy due to pyridoxal 5'-phosphate-binding protein (PLPBP) deficiency in an infant with early-onset epilepsy at the age of 5 years 6 months. Following immediate and impressive clinical response to treatment with pyridoxine, metabolic screening for vitamin-B6-dependent epilepsies and targeted next-generation sequencing (NGS)-based gene panel analysis were performed. Potentially pathogenic variants were confirmed by Sanger sequencing in the patient, and variants were analyzed in both parents to confirm biallelic inheritance. The clinical phenotype and course of disease were compared to the 44 cases reported in the literature, harboring variants in pyridoxal phosphate homeostasis protein (PLPHP) and with cases of vitamin-B6-dependent epilepsy due to other known causative genes. Levels of alpha-aminoadipic semialdehyde in urine and amino acids were normal. Two inherited pathogenic variations in PLPHP were found in compound heterozygosity, including one novel deletion. We here describe a previously unreported individual harboring biallelic pathogenic PLPHP variants presenting with paroxysmal eye-head movements followed by epileptic spasms and an almost normal interictal electroencephalogram, thus expanding the clinical spectrum of PLPBP deficiency. This warrants consideration of vitamin-B6-dependent epilepsies in patients with early-onset epilepsy, including epileptic spasms, and eye movement disorders also beyond the neonatal period even when metabolic screening for vitamin-B6-dependent epilepsies is negative. PLPHP should be included systematically in NGS epilepsy gene panels.


Epilepsy , Spasms, Infantile , Infant, Newborn , Humans , Infant , Child, Preschool , Spasms, Infantile/diagnosis , Spasms, Infantile/genetics , Head Movements , Epilepsy/diagnosis , Epilepsy/drug therapy , Epilepsy/etiology , Vitamin B 6/therapeutic use , Pyridoxine/therapeutic use , Spasm/complications , Spasm/drug therapy , Vitamins/therapeutic use
8.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Article En | MEDLINE | ID: mdl-36221165

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Humans , Glutaryl-CoA Dehydrogenase , Lysine/metabolism , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/therapy , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Glutarates/metabolism
9.
Front Pediatr ; 10: 944784, 2022.
Article En | MEDLINE | ID: mdl-36090556

We present a now 18-year-old female patient with a severe congenital myopathy phenotype, originally diagnosed as mitochondrial myopathy, however later revealed to constitute a SCN4A-related myopathy based on genetic testing. After birth, floppiness, bradycardia and respiratory insufficiency ensued, and moderately reduced mitochondrial complex I activity was found in muscle tissue (tested at 3 weeks and 3 years of age, respectively). She was treated with riboflavin, carnitine, creatine and a ketogenic diet. At the age of 13 years, whole exome sequencing challenged the initial diagnosis by identifying two (compound heterozygous) SCN4A variants affecting the highly conserved voltage sensor and pore regions of the voltage-gated sodium channel NaV1.4: a known pathogenic loss of function (LOF) variant [c.4360C>T; p.(Arg1454Trp)] and a novel variant of uncertain significance [c.3615C>G; p.(Asn1205Lys)]. For this novel variant, a LOF effect was predicted by in silico, clinical and functional evidence from paralog human sodium channels, and the variant was accordingly classified as likely pathogenic. The patient's phenotype is in line with the few published cases of autosomal recessive SCN4A-related myopathy. There was limited benefit from treatment with salbutamol and acetazolamide, while pyridostigmine caused side effects at a minor dose. This report highlights the importance of genetic testing in severe myopathies particularly in regard to treatment options and the value of paralog information in evaluating ion channel variations.

10.
Metabolites ; 12(4)2022 Mar 25.
Article En | MEDLINE | ID: mdl-35448478

Rett syndrome (RTT) is defined as a rare disease caused by mutations of the methyl-CpG binding protein 2 (MECP2). It is one of the most common causes of genetic mental retardation in girls, characterized by normal early psychomotor development, followed by severe neurologic regression. Hitherto, RTT lacks a specific biomarker, but altered lipid homeostasis has been found in RTT model mice as well as in RTT patients. We performed LC-MS/MS lipidomics analysis to investigate the cerebrospinal fluid (CSF) and plasma composition of patients with RTT for biochemical variations compared to healthy controls. In all seven RTT patients, we found decreased CSF cholesterol levels compared to age-matched controls (n = 13), whereas plasma cholesterol levels were within the normal range in all 13 RTT patients compared to 18 controls. Levels of phospholipid (PL) and sphingomyelin (SM) species were decreased in CSF of RTT patients, whereas the lipidomics profile of plasma samples was unaltered in RTT patients compared to healthy controls. This study shows that the CSF lipidomics profile is altered in RTT, which is the basis for future (functional) studies to validate selected lipid species as CSF biomarkers for RTT.

11.
J Inherit Metab Dis ; 45(2): 235-247, 2022 03.
Article En | MEDLINE | ID: mdl-34671989

BACKGROUND: The metabolic defect in glycogen storage disease type I (GSDI) results in fasting hypoglycemia and typical secondary metabolic abnormalities (eg, hypertriglyceridemia, hyperlactatemia, hyperuricemia). The aim of this study was to assess further perturbations of the metabolic network in GSDI patients under ongoing treatment. METHODS: In this prospective observational study, plasma samples of 14 adult patients (11 GSDIa, 3 GSDIb. Mean age 26.4 years, range 16-46 years) on standard treatment were compared to a cohort of 31 healthy controls utilizing ultra-high performance liquid chromatography (UHPLC) in combination with high resolution tandem mass spectrometry (HR-MS/MS) and subsequent statistical multivariate analysis. In addition, plasma fatty acid profiling was performed by GC/EI-MS. RESULTS: The metabolomic profile showed alterations of metabolites in different areas of the metabolic network in both GSD subtypes, including pathways of fuel metabolism and energy generation, lipids and fatty acids, amino acid and methyl-group metabolism, the urea cycle, and purine/pyrimidine metabolism. These alterations were present despite adequate dietary treatment, did not correlate with plasma triglycerides or lactate, both parameters typically used to assess the quality of metabolic control in clinical practice, and were not related to the presence or absence of complications (ie, nephropathy or liver adenomas). CONCLUSION: The metabolic defect of GSDI has profound effects on a variety of metabolic pathways in addition to the known typical abnormalities. These alterations are present despite optimized dietary treatment, which may contribute to the risk of developing long-term complications, an inherent problem of GSDI which appears to be only partly modified by current therapy.


Glycogen Storage Disease Type I , Hypoglycemia , Adolescent , Adult , Chromatography, High Pressure Liquid , Glycogen Storage Disease Type I/complications , Humans , Hypoglycemia/complications , Metabolomics , Middle Aged , Tandem Mass Spectrometry , Young Adult
12.
J Inherit Metab Dis ; 45(2): 144-156, 2022 03.
Article En | MEDLINE | ID: mdl-34595757

Inherited metabolic disorders (IMDs) are a heterogeneous group of rare disorders characterized by disruption of metabolic pathways. To date, data on incidence and prevalence of IMDs are limited. Taking advantage of a functioning network within the Austrian metabolic group, our registry research aimed to update the data of the "Registry for Inherited Metabolic Disorders" started between 1985 and 1995 with retrospectively retrieved data on patients with IMDs according to the Society for the Study of Inborn Errors of Metabolism International Classification of Diseases 11 (SSIEM ICD11) catalogue. Included in this retrospective register were 2631 patients with an IMD according to the SSIEM ICD11 Classification, who were treated in Austria. Thus, a prevalence of 1.8/10 000 for 2020 and a median minimal birth prevalence of 16.9/100 000 (range 0.7/100 000-113/100 000) were calculated for the period 1921 to February 2021. We detected a male predominance (m:f = 1.2:1) and a mean age of currently alive patients of 17.6 years (range 5.16 months-100 years). Most common diagnoses were phenylketonuria (17.7%), classical galactosaemia (6.6%), and biotinidase deficiency (4.2%). The most common diagnosis categories were disorders of amino acid and peptide metabolism (819/2631; 31.1%), disorders of energy metabolism (396/2631; 15.1%), and lysosomal disorders (395/2631; 15.0%). In addition to its epidemiological relevance, the "Registry for Inherited Metabolic Disorders" is an important tool for enhancing an exchange between care providers. Moreover, by pooling expertise it prospectively improves patient treatment, similar to pediatric oncology protocols. A substantial requirement for ful filling this goal is to regularly update the registry and provide nationwide coverage with inclusion of all medical specialties.


Metabolic Diseases , Metabolism, Inborn Errors , Austria/epidemiology , Child , Female , Humans , Infant , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/epidemiology , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/epidemiology , Prevalence , Registries , Retrospective Studies
13.
J Med Genet ; 59(7): 662-668, 2022 07.
Article En | MEDLINE | ID: mdl-34379057

BACKGROUND: Genes implicated in the Golgi and endosomal trafficking machinery are crucial for brain development, and mutations in them are particularly associated with postnatal microcephaly (POM). METHODS: Exome sequencing was performed in three affected individuals from two unrelated consanguineous families presenting with delayed neurodevelopment, intellectual disability of variable degree, POM and failure to thrive. Patient-derived fibroblasts were tested for functional effects of the variants. RESULTS: We detected homozygous truncating variants in ATP9A. While the variant in family A is predicted to result in an early premature termination codon, the variant in family B affects a canonical splice site. Both variants lead to a substantial reduction of ATP9A mRNA expression. It has been shown previously that ATP9A localises to early and recycling endosomes, whereas its depletion leads to altered gene expression of components from this compartment. Consistent with previous findings, we also observed overexpression of ARPC3 and SNX3, genes strongly interacting with ATP9A. CONCLUSION: In aggregate, our findings show that pathogenic variants in ATP9A cause a novel autosomal recessive neurodevelopmental disorder with POM. While the physiological function of endogenous ATP9A is still largely elusive, our results underline a crucial role of this gene in endosomal transport in brain tissue.


Adenosine Triphosphatases/genetics , Intellectual Disability , Membrane Transport Proteins/genetics , Microcephaly , Nervous System Malformations , Neurodevelopmental Disorders , Failure to Thrive , Homozygote , Humans , Intellectual Disability/genetics , Microcephaly/pathology , Neurodevelopmental Disorders/genetics , Pedigree
14.
Lancet Child Adolesc Health ; 6(1): 17-27, 2022 01.
Article En | MEDLINE | ID: mdl-34756190

BACKGROUND: Given the novelty of gene replacement therapy with onasemnogene abeparvovec in spinal muscular atrophy, efficacy and safety data are limited, especially for children older than 24 months, those weighing more than 8·5 kg, and those who have received nusinersen. We aimed to provide real-world data on motor function and safety after gene replacement therapy in different patient subgroups. METHODS: We did a protocol-based, multicentre prospective observational study between Sept 21, 2019, and April 20, 2021, in 18 paediatric neuromuscular centres in Germany and Austria. All children with spinal muscular atrophy types 1 and 2 receiving onasemnogene abeparvovec were included in our cohort, and there were no specific exclusion criteria. Motor function was assessed at the time of gene replacement therapy and 6 months afterwards, using the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) and Hammersmith Functional Motor Scale-Expanded (HFMSE) scores. Additionally, in children pretreated with nusinersen, motor function was assessed before and after treatment switch. Off-target adverse events were analysed with a focus on liver function, thrombocytopaenia, and potential cardiotoxicity. FINDINGS: 76 children (58 pretreated with nusinersen and 18 who were nusinersen naive) with spinal muscular atrophy were treated with onasemnogene abeparvovec at a mean age of 16·8 months (range 0·8-59·0, IQR 9-23) and a mean weight of 9·1 kg (range 4·0-15·0, IQR 7·4-10·6). In 60 patients with available data, 49 had a significant improvement on the CHOP-INTEND score (≥4 points) and HFMSE score (≥3 points). Mean CHOP INTEND scores increased significantly in the 6 months after therapy in children younger than 8 months (n=16; mean change 13·8 [SD 8·5]; p<0·0001) and children aged between 8 and 24 months (n=34; 7·7 [SD 5·2]; p<0·0001), but not in children older than 24 months (n=6; 2·5 [SD 5·2]; p=1·00). In the 45 children pretreated with nusinersen and had available data, CHOP INTEND score increased by 8·8 points (p=0·0003) at 6 months after gene replacement therapy. No acute complications occurred during infusion of onasemnogene abeparvovec, but 56 (74%) patients had treatment-related side-effects. Serious adverse events occurred in eight (11%) children. Liver enzyme elevation significantly increased with age and weight at treatment. Six (8%) patients developed acute liver dysfunction. Other adverse events included pyrexia (n=47 [62%]), vomiting or loss of appetite (41 [54%]), and thrombocytopenia (n=59 [78%]). Prednisolone treatment was significantly prolonged with a mean duration of 15·7 weeks (IQR 9-19), mainly due to liver enzyme elevation. Cardiac adverse events were rare; only two patients had abnormal echocardiogram and echocardiography findings. INTERPRETATION: This study provides class IV evidence that children with spinal muscular atrophy aged 24 months or younger and patients pretreated with nusinersen significantly benefit from gene replacement therapy, but adverse events can be severe and need to be closely monitored. FUNDING: None. TRANSLATION: For the German translation of the abstract see Supplementary Materials section.


Body Weight/physiology , Genetic Therapy , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides , Age Factors , Austria , Child, Preschool , Female , Germany , Humans , Infant , Male , Oligonucleotides/adverse effects , Oligonucleotides/therapeutic use , Prospective Studies , Surveys and Questionnaires
15.
Parkinsonism Relat Disord ; 94: 54-61, 2022 01.
Article En | MEDLINE | ID: mdl-34890876

INTRODUCTION: Sixteen subjects with biallelic WARS2 variants encoding the tryptophanyl mitochondrial aminoacyl-tRNA synthetase, presenting with a neonatal- or infantile-onset mitochondrial disease, have been reported to date. Here we present six novel cases with WARS2-related diseases and expand the spectrum to later onset phenotypes including dopa-responsive early-onset parkinsonism and progressive myoclonus-ataxia. METHODS: Six individuals from four families underwent whole-exome sequencing within research and diagnostic settings. Following the identification of a genetic defect, in-depth phenotyping and protein expression studies were performed. RESULTS: A relatively common (gnomAD MAF = 0.0033) pathogenic p.(Trp13Gly) missense variant in WARS2 was detected in trans in all six affected individuals in combination with different pathogenic alleles (exon 2 deletion in family 1; p.(Leu100del) in family 2; p.(Gly50Asp) in family 3; and p.(Glu208*) in family 4). Two subjects presented with action tremor around age 10-12 years and developed tremor-dominant parkinsonism with prominent neuropsychiatric features later in their 20s. Two subjects presented with a progressive myoclonus-ataxia dominant phenotype. One subject presented with spasticity, choreo-dystonia, myoclonus, and speech problems. One subject presented with speech problems, ataxia, and tremor. Western blotting analyses in patient-derived fibroblasts showed a markedly decreased expression of the full-length WARS2 protein in both subjects carrying p.(Trp13Gly) and an exon-2 deletion in compound heterozygosity. CONCLUSIONS: This study expands the spectrum of the disease to later onset phenotypes of early-onset tremor-dominant parkinsonism and progressive myoclonus-ataxia phenotypes.


Myoclonus , Parkinsonian Disorders , Spinocerebellar Degenerations , Tryptophan-tRNA Ligase , Ataxia , Dihydroxyphenylalanine , Humans , Mutation , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/genetics , Phenotype , Tremor , Tryptophan-tRNA Ligase/genetics
16.
J Med Genet ; 59(10): 957-964, 2022 Oct.
Article En | MEDLINE | ID: mdl-34916232

BACKGROUND: Mucopolysaccharidoses (MPS) are monogenic metabolic disorders that significantly affect the skeleton. Eleven enzyme defects in the lysosomal degradation of glycosaminoglycans (GAGs) have been assigned to the known MPS subtypes (I-IX). Arylsulfatase K (ARSK) is a recently characterised lysosomal hydrolase involved in GAG degradation that removes the 2-O-sulfate group from 2-sulfoglucuronate. Knockout of Arsk in mice was consistent with mild storage pathology, but no human phenotype has yet been described. METHODS: In this study, we report four affected individuals of two unrelated consanguineous families with homozygous variants c.250C>T, p.(Arg84Cys) and c.560T>A, p.(Leu187Ter) in ARSK, respectively. Functional consequences of the two ARSK variants were assessed by mutation-specific ARSK constructs derived by site-directed mutagenesis, which were ectopically expressed in HT1080 cells. Urinary GAG excretion was analysed by dimethylene blue and electrophoresis, as well as liquid chromatography/mass spectrometry (LC-MS)/MS analysis. RESULTS: The phenotypes of the affected individuals include MPS features, such as short stature, coarse facial features and dysostosis multiplex. Reverse phenotyping in two of the four individuals revealed additional cardiac and ophthalmological abnormalities. Mild elevation of dermatan sulfate was detected in the two subjects investigated by LC-MS/MS. Human HT1080 cells expressing the ARSK-Leu187Ter construct exhibited absent protein levels by western blot, and cells with the ARSK-Arg84Cys construct showed markedly reduced enzyme activity in an ARSK-specific enzymatic assay against 2-O-sulfoglucuronate-containing disaccharides as analysed by C18-reversed-phase chromatography followed by MS. CONCLUSION: Our work provides a detailed clinical and molecular characterisation of a novel subtype of mucopolysaccharidosis, which we suggest to designate subtype X.


Arylsulfatases , Mucopolysaccharidoses , Animals , Chromatography, Liquid/methods , Dermatan Sulfate , Disaccharides/analysis , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Humans , Mice , Mice, Knockout , Sulfates , Tandem Mass Spectrometry/methods
17.
Horm Res Paediatr ; 94(9-10): 390-398, 2021.
Article En | MEDLINE | ID: mdl-34673643

Hypophosphatasia (HPP) is an inborn error of metabolism caused by loss-of-function mutations in the biomineralization-associated alkaline phosphatase gene, encoding tissue-nonspecific alkaline phosphatase (TNSALP). Symptoms include skeletal hypomineralization and extra-skeletal manifestations such as pyridoxine (B6)-responsive seizures due to impaired cerebral B6 passage. Since the introduction of enzyme replacement therapy (ERT), skeletal manifestations and B6-responsive seizures were reported to improve significantly. Nevertheless, there is an increasing evidence of B6-independent neurological manifestation of HPP including HPP-associated encephalopathy. Here, we present for the first time the brain alterations of an infant with neonatal HPP who died of neurological complications at the age of 5 months despite early initiation of ERT. CSF analysis showed normal concentrations of biogenic amines reflecting sufficient intracellular B6 availability. Postmortem histopathology revealed severe, localized affection of the cerebral cortex including cortical lesions in layers 2 and 3 in direct proximity to TNSALP-expressing neurons and hippocampal sclerosis. Our findings confirm that TNSALP deficiency may lead to a severe encephalopathy. We hypothesize that HPP-associated encephalopathy resistant to currently available ERT may develop in addition and probably independently of typical B6-responsive seizures in some patients. Prospective, controlled studies with close neurological follow-up including brain imaging are needed to identify patients at risk for severe neurological symptoms despite ERT.


Brain Diseases , Hypophosphatasia , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Brain Diseases/drug therapy , Brain Diseases/genetics , Enzyme Replacement Therapy/methods , Humans , Hypophosphatasia/diagnosis , Hypophosphatasia/drug therapy , Hypophosphatasia/genetics , Infant , Infant, Newborn , Mutation , Prospective Studies
18.
Orphanet J Rare Dis ; 16(1): 367, 2021 08 19.
Article En | MEDLINE | ID: mdl-34412683

BACKGROUND: In classical phenylketonuria (PKU) phenylalanine (Phe) accumulates due to functional impairment of the enzyme phenylalanine hydroxylase caused by pathogenic variants in the PAH gene. PKU treatment prevents severe cognitive impairment. Blood Phe concentration is the main biochemical monitoring parameter. Between appointments and venous blood sampling, Austrian PKU patients send dried blood spots (DBS) for Phe measurements to their centre. Coronavirus disease-19 (COVID-19), caused by the SARS CoV-2 virus, was classified as a pandemic by the World Health Organization in March 2020. In Austria, two nationwide lockdowns were installed during the first and second pandemic wave with variable regional and national restrictions in between. This retrospective questionnaire study compared the frequency of Phe measurements and Phe concentrations during lockdown with the respective period of the previous year in children and adolescents with PKU and explored potential influencing factors. RESULTS: 77 patients (30 female, 47 male; mean age 12.4 [8-19] years in 2020) from five centres were included. The decline of venous samples taken on appointments in 2020 did not reach significance but the number of patients with none or only one DBS tripled from 4 (5.2%) in 2019 to 12 (15.6%) in 2020. Significantly more patients had a decline than a rise in the number of DBS sent in between 2019 and 2020 (p < 0.001; Chi2 = 14.79). Especially patients ≥ 16 years sent significantly less DBS in 2020 (T = 156, p = 0.02, r = 0.49). In patients who adhered to DBS measurements, Phe concentrations remained stable. Male or female sex and dietary only versus dietary plus sapropterin treatment did not influence frequency of measurements and median Phe. CONCLUSION: During the COVID pandemic, the number of PKU patients who stopped sending DBS to their metabolic centre increased significantly, especially among those older than 16 years. Those who kept up sending DBS maintained stable Phe concentrations. Our follow-up system, which is based on DBS sent in by patients to trigger communication with the metabolic team served adherent patients well. It failed, however, to actively retrieve patients who stopped or reduced Phe measurements.


COVID-19 , Phenylketonurias , Adolescent , Austria , Child , Communicable Disease Control , Disease Management , Female , Humans , Male , Pandemics , Phenylketonurias/epidemiology , Retrospective Studies , SARS-CoV-2
19.
Children (Basel) ; 8(8)2021 Aug 09.
Article En | MEDLINE | ID: mdl-34438578

Disorders of the peripheral nerves can be caused by a broad spectrum of acquired or hereditary aetiologies. The objective of these practice guidelines is to provide the reader with information about the differential diagnostic workup for a target-oriented diagnosis. Following an initiative of the German-speaking Society of Neuropaediatrics, delegates from 10 German societies dedicated to neuroscience worked in close co-operation to write this guideline. Applying the Delphi methodology, the authors carried out a formal consensus process to develop practice recommendations. These covered the important diagnostic steps both for acquired neuropathies (traumatic, infectious, inflammatory) and the spectrum of hereditary Charcot-Marie-Tooth (CMT) diseases. Some of our most important recommendations are that: (i) The indication for further diagnostics must be based on the patient's history and clinical findings; (ii) Potential toxic neuropathy also has to be considered; (iii) For focal and regional neuropathies of unknown aetiology, nerve sonography and MRI should be performed; and (iv) For demyelinated hereditary neuropathy, genetic diagnostics should first address PMP22 gene deletion: once that has been excluded, massive parallel sequencing including an analysis of relevant CMT-genes should be performed. This article contains a short version of the guidelines. The full-length text (in German) can be found at the Website of the "Arbeitsgemeinschaft der Wissenschftlichen Medizinischen Fachgesellschaften e.V. (AWMF), Germany.

20.
JIMD Rep ; 60(1): 3-9, 2021 Jul.
Article En | MEDLINE | ID: mdl-34258135

Mutations in the FOLR1 gene, encoding for the folate alpha receptor (FRa), represent a rare recessive genetic cause of cerebral folate deficiency (CFD), a potentially reversible neurometabolic condition. Patients typically present with developmental delay, seizures, abnormal movements, and delayed myelination. We hereby expand the phenotypic and genotypic spectrum of the disease with the report of the first two Greek siblings that were found compound heterozygous for one known FOLR1 gene mutation (p.Cys65Trp) and a mutation (p.Trp143Arg) that has not yet been reported in the literature (class 3 variant according to ASHG classification). A distinguishing feature of the older sibling is the manifestation of drug-resistant epileptic spasms beyond infancy. These had a relatively good response to a ketogenic diet, as an additional treatment to topiramate and valproate. A further clinical improvement was observed when folinic acid was combined with the above treatment. While a response to folinic acid is well established in the disorder, the efficacy of its combination with the ketogenic diet needs further evaluation, but we suggest considering it early in the course of drug resistant epilepsy in the setting of CFD. The younger sibling was diagnosed and treated with folinic acid at an early-symptomatic stage. Both patients had moderately low age-related CSF 5-methyltetrahydrofolate levels at diagnosis with the older sibling (that was already treated at base line collection) averaging 19 nmol/L (normal range: 44-122 nmol/L) and the younger one 49 nmol/L (normal range 63-122 nmol/L). These levels were restored to normal limits after folinic supplementation.

...