Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
J Fungi (Basel) ; 7(11)2021 Nov 19.
Article En | MEDLINE | ID: mdl-34829275

Sensing and responding to changes in NaCl concentration in hypersaline environments is vital for cell survival. In this paper, we identified and characterized key components of the high-osmolarity glycerol (HOG) signal transduction pathway, which is crucial in sensing hypersaline conditions in the extremely halotolerant black yeast Hortaea werneckii and in the obligate halophilic fungus Wallemia ichthyophaga. Both organisms were isolated from solar salterns, their predominating ecological niche. The identified components included homologous proteins of both branches involved in sensing high osmolarity (SHO1 and SLN1) and the homologues of mitogen-activated protein kinase module (MAPKKK Ste11, MAPKK Pbs2, and MAPK Hog1). Functional complementation of the identified gene products in S. cerevisiae mutant strains revealed some of their functions. Structural protein analysis demonstrated important structural differences in the HOG pathway components between halotolerant/halophilic fungi isolated from solar salterns, salt-sensitive S. cerevisiae, the extremely salt-tolerant H. werneckii, and halophilic W. ichthyophaga. Known and novel gene targets of MAP kinase Hog1 were uncovered particularly in halotolerant H. werneckii. Molecular studies of many salt-responsive proteins confirm unique and novel mechanisms of adaptation to changes in salt concentration.

2.
Molecules ; 26(4)2021 Feb 12.
Article En | MEDLINE | ID: mdl-33673080

This study investigated the effect of type 1 gonadotropin releasing hormone receptor (GnRH-R) localization within lipid rafts on the properties of plasma membrane (PM) nanodomain structure. Confocal microscopy revealed colocalization of PM-localized GnRH-R with GM1-enriched raft-like PM subdomains. Electron paramagnetic resonance spectroscopy (EPR) of a membrane-partitioned spin probe was then used to study PM fluidity of immortalized pituitary gonadotrope cell line αT3-1 and HEK-293 cells stably expressing GnRH-R and compared it with their corresponding controls (αT4 and HEK-293 cells). Computer-assisted interpretation of EPR spectra revealed three modes of spin probe movement reflecting the properties of three types of PM nanodomains. Domains with an intermediate order parameter (domain 2) were the most affected by the presence of the GnRH-Rs, which increased PM ordering (order parameter (S)) and rotational mobility of PM lipids (decreased rotational correlation time (τc)). Depletion of cholesterol by methyl-ß-cyclodextrin (methyl-ß-CD) inhibited agonist-induced GnRH-R internalization and intracellular Ca2+ activity and resulted in an overall reduction in PM order; an observation further supported by molecular dynamics (MD) simulations of model membrane systems. This study provides evidence that GnRH-R PM localization may be related to a subdomain of lipid rafts that has lower PM ordering, suggesting lateral heterogeneity within lipid raft domains.


Membrane Lipids/chemistry , Membrane Microdomains/chemistry , Receptors, LHRH/chemistry , Cholesterol/chemistry , Cholesterol/genetics , Electron Spin Resonance Spectroscopy , HEK293 Cells , Humans , Membrane Lipids/genetics , Membrane Microdomains/genetics , Membrane Microdomains/ultrastructure , Protein Domains/genetics , Receptors, LHRH/genetics , Receptors, LHRH/therapeutic use , Receptors, LHRH/ultrastructure , Signal Transduction/genetics
3.
Sci Rep ; 10(1): 21346, 2020 12 07.
Article En | MEDLINE | ID: mdl-33288809

Human plasma is a complex fluid, increasingly used for extracellular vesicle (EV) biomarker studies. Our aim was to find a simple EV-enrichment method for reliable quantification of EVs in plasma to be used as biomarker of disease. Plasma of ten healthy subjects was processed using sedimentation rate- (sucrose cushion ultracentrifugation-sUC) and size- (size exclusion chromatography-SEC) based methods. According to nanoparticle tracking analysis (NTA), asymmetrical flow field-flow fractionation coupled to detectors (AF4-UV-MALS), miRNA quantification, transmission electron microscopy and enzyme-linked immunosorbent assay, enrichment of EVs from plasma with sUC method lead to high purity of EVs in the samples. High nanoparticle concentrations after SEC resulted from substantial contamination with lipoproteins and other aggregates of EV-like sizes that importantly affect downstream EV quantification. Additionally, sUC EV-enrichment method linked to quantification with NTA or AF4-UV-MALS is repeatable, as the relative standard deviation of EV size measured in independently processed samples from the same plasma source was 5.4% and 2.1% when analyzed by NTA or AF4-UV-MALS, respectively. In conclusion, the sUC EV-enrichment method is compatible with reliable measurement of concentration and size of EVs from plasma and should in the future be tested on larger cohorts in relation to different diseases. This is one of the first studies using AF4-UV-MALS to quantify EVs in blood plasma, which opens new possible clinical utility for the technique.


Biomarkers/analysis , Extracellular Vesicles/chemistry , Plasma/chemistry , Chromatography, Gel , Female , Fractionation, Field Flow , Humans , Male , Middle Aged , Nanoparticles/chemistry , Proteomics
4.
FEMS Microbiol Rev ; 42(3): 353-375, 2018 05 01.
Article En | MEDLINE | ID: mdl-29529204

Hypersaline environments with salt concentrations up to NaCl saturation are inhabited by a great diversity of microorganisms belonging to the three domains of life. They all must cope with the low water activity of their environment, but different strategies exist to provide osmotic balance of the cells' cytoplasm with the salinity of the medium. One option used by many halophilic Archaea and a few representatives of the Bacteria is to accumulate salts, mainly KCl and to adapt the entire intracellular machinery to function in the presence of molar concentrations of salts. A more widespread option is the synthesis or accumulation of organic osmotic, so-called compatible solutes. Here, we review the mechanisms of osmotic adaptation in a number of model organisms, including the KCl accumulating Halobacterium salinarum (Archaea) and Salinibacter ruber (Bacteria), Halomonas elongata as a representative of the Bacteria that synthesize organic osmotic solutes, eukaryotic microorganisms including the unicellular green alga Dunaliella salina and the black yeasts Hortaea werneckii and the basidiomycetous Wallemia ichthyophaga, which use glycerol and other compatible solutes. The strategies used by these model organisms and by additional halophilic microorganisms presented are then compared to obtain an integrative picture of the adaptations to life at high salt concentrations in the microbial world.


Adaptation, Physiological , Archaea/physiology , Bacterial Physiological Phenomena , Chlorophyta/physiology , Fungi/physiology , Salinity , Models, Biological
5.
Biochim Biophys Acta Biomembr ; 1860(6): 1350-1361, 2018 Jun.
Article En | MEDLINE | ID: mdl-29551275

PKH lipophilic dyes are highly fluorescent and stain membranes by intercalating their aliphatic portion into the exposed lipid bilayer. They have established use in labeling and tracking of cells in vivo and in vitro. Despite wide use of PKH-labeled extracellular vesicles (EVs) in cell targeting and functional studies, nonEV-associated fluorescent structures have never been examined systematically, nor was their internalization by cells. Here, we have characterized PKH26-positive particles in lymphoblastoid B exosome samples and exosome-free controls stained by ultracentrifugation, filtration, and sucrose-cushion-based and sucrose-gradient-based procedures, using confocal imaging and asymmetric-flow field-flow fractionation coupled to multi-angle light-scattering detector analysis. We show for the first time that numerous PKH26 nanoparticles (nine out of ten PKH26-positive particles) are formed during ultracentrifugation-based exosome staining, which are almost indistinguishable from PKH26-labeled exosomes in terms of size, surface area, and fluorescence intensity. When PKH26-labeled exosomes were purified through sucrose, PKH26 nanoparticles were differentiated from PKH26-labeled exosomes based on their reduced size. However, PKH26 nanoparticles were only physically removed from PKH26-labeled exosomes when separated on a sucrose gradient, and at the expense of low PKH26-labeled exosome recovery. Overall, low PKH26-positive particle recovery is characteristic of filtration-based exosome staining. Importantly, PKH26 nanoparticles are internalized by primary astrocytes into similar subcellular compartments as PKH26-labeled exosomes. Altogether, PKH26 nanoparticles can result in false-positive signals for stained EVs that can compromise the interpretation of EV internalization. Thus, for use in EV uptake and functional studies, sucrose-gradient-based isolation should be the method of choice to obtain PKH26-labeled exosomes devoid of PKH26 nanoparticles.


Exosomes/metabolism , Fluorescent Dyes/metabolism , Nanoparticles/metabolism , Organic Chemicals/metabolism , Staining and Labeling/methods , Animals , Astrocytes/metabolism , Centrifugation, Density Gradient , Exosomes/ultrastructure , Female , Flow Cytometry , Fluorescent Dyes/analysis , Microscopy, Confocal , Organic Chemicals/analysis , Rats , Ultracentrifugation
6.
PLoS One ; 13(1): e0191613, 2018.
Article En | MEDLINE | ID: mdl-29364927

OBJECTIVE: To address the role of translationally active HIV reservoir in chronic inflammation and non-AIDS related disorders, we first need a simple and accurate assay to evaluate viral protein expression in virally suppressed subjects. DESIGN: We optimized an HIV Nef enzyme-linked immunosorbent assay (ELISA) and used it to quantify plasma Nef levels as an indicator of the leaky HIV reservoir in an HIV-infected cohort. METHODS: This study accessed 134 plasma samples from a well-characterized cohort study of HIV-infected and uninfected adults in San Francisco (the SCOPE cohort). We optimized an ELISA for detection of plasma Nef in HIV-negative subjects and HIV-infected non-controllers, and evaluated its utility to quantify plasma Nef levels in a cross-sectional study of ART-suppressed and elite controller HIV-infected subjects. RESULTS: Here, we describe the performance of an optimized HIV Nef ELISA. When we applied this assay to the study cohort we found that plasma Nef levels were correlated with plasma HIV RNA levels in untreated disease. However, we were able to detect Nef in plasma of approximately half of subjects on ART or with elite control, despite the lack of detectable plasma HIV RNA levels using standard assays. Plasma Nef levels were not consistently associated with CD4+ T-cell count, CD8+ T-cell count, self-reported nadir CD4+ T-cell count or the CD4+/CD8+ T-cell ratio in HIV-infected subjects. CONCLUSION: Since plasma HIV RNA levels are undetectable in virally suppressed subjects, it is reasonable to assume that viral protein expression in leaky reservoir, and not plasma virions, is the source of Nef accumulating in plasma. To examine this further, improvements of the assay sensitivity, by lowering the background through improvements in the quality of Nef antibodies, and detailed characterization of the HIV reservoirs are needed.


Gene Products, nef/blood , HIV Infections/blood , RNA, Viral/blood , Viral Load , Adult , Aged , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Young Adult
7.
Acta Chim Slov ; 64(3): 530-536, 2017 09.
Article En | MEDLINE | ID: mdl-28862291

Determining the HIV-1 reservoir size in infected individuals is of great importance for improvement of their treatment. Plasma trans-activation response element (TAR) RNA has been suggested as one of the possible biomarkers. TAR RNA is produced during non-processive transcription in HIV-1 productively infected and latent T cells. Here, plasma samples and paired exosome samples of 55 subjects from the observational SCOPE cohort were analysed for the presence of TAR RNA. First, a PCR-based assay was optimized, which provided 100% specificity and 100% sensitivity in differentiating HIV-1 infected non-controllers from uninfected individuals. Next, TAR RNA was detected in the plasma of 63% of aviremic HIV-1-infected patients, who were either treated with antiretroviral therapy or were elite controllers. Although TAR RNA levels did not correlate with patient gender, age, CD4 levels, CD8 levels, they tended to correlate with CD4/CD8 ratio (P = 0.047). This study is the first to investigate plasma TAR RNA in a relatively large cohort of HIV-1-infected patients. We additionally show that the TAR RNA molecules in the plasma of aviremic patients are not limited to exosomes.


HIV Infections/blood , RNA/blood , Response Elements , Cohort Studies , HIV-1 , Humans
8.
J Neurovirol ; 23(5): 713-724, 2017 10.
Article En | MEDLINE | ID: mdl-28762184

HIV-1 infection of the central nervous system causes HIV-associated neurocognitive disorders, even in aviremic patients. Although astrocyte malfunction was associated to these disorders, their implication is overshadowed by contributions of microglia and macrophages. Astrocytes are infected with HIV-1 in vivo and express a relevant amount of viral protein Nef. Nef was shown to stimulate its own release in exosomes from diverse cell types, which in turn have damaging effects on neighboring cells. Using immunoblotting and electron microscopy, we showed that human astrocytes expressing Nef.GFP similarly release Nef in exosomes. Importantly, Nef.GFP expression increases the secretion of exosomes from human astrocytes up to 5.5-fold, as determined by total protein content and nanoparticle tracking analysis. Protein analysis of exosomes and viruses separated on iodixanol gradient further showed that native or pseudotyped HIV-1-infected human astrocytes release exosomes, which contain Nef. Our results provide the basis for future studies of the damaging role of Nef-exosomes produced by HIV-infected astrocytes on the central nervous system.


Astrocytes/virology , Exosomes/virology , HIV Infections/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Astrocytes/metabolism , Cell Line , Exosomes/metabolism , HIV-1/metabolism , Humans
9.
G3 (Bethesda) ; 7(7): 2015-2022, 2017 07 05.
Article En | MEDLINE | ID: mdl-28500048

Extremophilic organisms demonstrate the flexibility and adaptability of basic biological processes by highlighting how cell physiology adapts to environmental extremes. Few eukaryotic extremophiles have been well studied and only a small number are amenable to laboratory cultivation and manipulation. A detailed characterization of the genome architecture of such organisms is important to illuminate how they adapt to environmental stresses. One excellent example of a fungal extremophile is the halophile Hortaea werneckii (Pezizomycotina, Dothideomycetes, Capnodiales), a yeast-like fungus able to thrive at near-saturating concentrations of sodium chloride and which is also tolerant to both UV irradiation and desiccation. Given its unique lifestyle and its remarkably recent whole genome duplication, H. werneckii provides opportunities for testing the role of genome duplications and adaptability to extreme environments. We previously assembled the genome of H. werneckii using short-read sequencing technology and found a remarkable degree of gene duplication. Technology limitations, however, precluded high-confidence annotation of the entire genome. We therefore revisited the H. wernickii genome using long-read, single-molecule sequencing and provide an improved genome assembly which, combined with transcriptome and nucleosome analysis, provides a useful resource for fungal halophile genomics. Remarkably, the ∼50 Mb H. wernickii genome contains 15,974 genes of which 95% (7608) are duplicates formed by a recent whole genome duplication (WGD), with an average of 5% protein sequence divergence between them. We found that the WGD is extraordinarily recent, and compared to Saccharomyces cerevisiae, the majority of the genome's ohnologs have not diverged at the level of gene expression of chromatin structure.


Ascomycota/genetics , Chromatin/physiology , Gene Duplication , Gene Expression Regulation, Fungal/physiology , Genome, Fungal/physiology
10.
Front Microbiol ; 7: 901, 2016.
Article En | MEDLINE | ID: mdl-27379041

The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.

11.
Adv Exp Med Biol ; 892: 307-325, 2016.
Article En | MEDLINE | ID: mdl-26721280

Fungi that tolerate very high environmental NaCl concentrations are good model systems to study mechanisms that enable them to endure osmotic and salinity stress. The whole genome sequences of six such fungal species have been analysed: Hortaea werneckii, Wallemia ichthyophaga and four Aureobasidium spp.: A. pullulans, A. subglaciale, A. melanogenum and A. namibiae. These fungi show different levels of halotolerance, with the presence of numerous membrane transport systems uncovered here that are believed to maintain physiological intracellular concentrations of alkali metal cations. Despite some differences, the intracellular cation contents of H. werneckii, A. pullulans and W. ichthyophaga remain low even under extreme extracellular salinities, which suggests that these species have efficient cation transport systems. We speculate that cation transporters prevent intracellular accumulation of Na(+), and thus avoid the toxic effects that such Na(+) accumulation would have, while also maintaining the high K(+)/Na(+) ratio that is required for the full functioning of the cell - another crucial task in high-Na(+) environments. This chapter primarily summarises the cation transport systems of these selected fungi, and it also describes other membrane transporters that might be involved in their mechanisms of halotolerance.


Basidiomycota/metabolism , Fungal Proteins/metabolism , Saccharomycetales/metabolism , Sodium Chloride/metabolism , Basidiomycota/drug effects , Basidiomycota/genetics , Fungal Proteins/genetics , Gene Expression , H(+)-K(+)-Exchanging ATPase/genetics , H(+)-K(+)-Exchanging ATPase/metabolism , Ion Transport , Osmotic Pressure , Potassium Channels/genetics , Potassium Channels/metabolism , Saccharomycetales/drug effects , Saccharomycetales/genetics , Salinity , Salt Tolerance , Sodium Chloride/pharmacology , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Stress, Physiological
12.
FEMS Microbiol Lett ; 362(8): fnv046, 2015 Apr.
Article En | MEDLINE | ID: mdl-25825474

HwHog1A/B, Hortaea werneckii homologues of the MAP kinase Hog1 from Saccharomyces cerevisiae, are vital for the extreme halotolerance of H. werneckii. In mesophilic S. cerevisiae, Hog1 is phosphorylated already at low osmolyte concentrations, and regulates expression of a similar set of genes independent of osmolyte type. To understand how HwHog1 kinases activity is regulated in H. werneckii, we studied HwHog1A/B activation in vivo, by following phosphorylation of HwHog1A/B in H. werneckii exposed to various osmolytes, and in vitro, by measuring kinase activities of recombinant HwHog1A, HwHog1B and Hog1ΔC. To this end, highly pure and soluble recombinant Hog1 homologues were isolated from insect cells. Our results demonstrate that HwHog1A/B are, in general, transiently phosphorylated in cells shocked with ≥3 M osmolyte, yet constitutive phosphorylation is observed at extreme NaCl and KCl concentrations. Importantly, phosphorylation profiles differ depending on the osmolyte type. Additionally, phosphorylated recombinant HwHog1A/B show lower specific kinase activities compared to Hog1ΔC. In summary, HOG pathway MAPKs in the extremely halotolerant H. werneckii show unique characteristics compared to S. cerevisiae homologues. The reported findings contribute to defining the key determinants of H. werneckii osmotolerance, which is important for its potential transfer to economically relevant microorganisms and crops.


Ascomycota/physiology , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases/metabolism , Mitosporic Fungi/enzymology , Mitosporic Fungi/physiology , Salt Tolerance , Amino Acid Sequence , Ascomycota/enzymology , Ascomycota/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Imidazoles/pharmacology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Mitosporic Fungi/genetics , Osmotic Pressure , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Recombinant Proteins/isolation & purification , Saccharomyces cerevisiae/genetics , Salt Tolerance/genetics
13.
Fungal Genet Biol ; 74: 45-58, 2015 Jan.
Article En | MEDLINE | ID: mdl-25483129

Although suggested, the involvement of the HOG pathway in adaptation processes in extremely halotolerant fungus Hortaea werneckii has never been specifically demonstrated. Here, we show that the H. werneckii HOG pathway is very robust, and that it includes two functionally redundant MAPK homologues, HwHog1A and HwHog1B, that show osmolyte-type-dependent phosphorylation. Inhibition of HwHog1 kinase activity with the ATP analogue BPTIP restricts H. werneckii colony growth at 3.0M NaCl, KCl and sorbitol, most likely due to restricted cell division. On the other hand, HwHog1-regulated transcription of a selected group of genes (HwSTL1, HwGUT2, HwOPI3, HwGDH1, HwUGP1, HwGPD1) is an osmolyte-specific process that is important for induction of gene transcription with high NaCl, for regulation of specific genes with high sorbitol, and has no role in KCl stressed cells. Survival of H. werneckii at moderate NaCl and KCl concentrations is not dependent on HwHog1 activity or the calcineurin pathway, and thus alternative mechanisms must exist. The HOG pathway described here is vital for the extreme osmotolerance of H. werneckii, and its regulation shows important differences from the homologue pathways characterised in other mesophilic and halotolerant fungi.


Adaptation, Physiological , Ascomycota/enzymology , Fungal Proteins/physiology , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases/physiology , Adaptation, Physiological/genetics , Ascomycota/drug effects , Ascomycota/genetics , Base Sequence , Calcineurin/metabolism , Computer Simulation , Fungal Proteins/genetics , Metabolic Networks and Pathways/genetics , Mitogen-Activated Protein Kinases/drug effects , Mitogen-Activated Protein Kinases/genetics , Molecular Sequence Data , Osmolar Concentration , Potassium Chloride/pharmacology , Sodium Chloride/pharmacology , Sorbitol/pharmacology
14.
Front Microbiol ; 5: 199, 2014.
Article En | MEDLINE | ID: mdl-24860557

Molecular studies of salt tolerance of eukaryotic microorganisms have until recently been limited to the baker's yeast Saccharomyces cerevisiae and a few other moderately halotolerant yeast. Discovery of the extremely halotolerant and adaptable fungus Hortaea werneckii and the obligate halophile Wallemia ichthyophaga introduced two new model organisms into studies on the mechanisms of salt tolerance in eukaryotes. H. werneckii is unique in its adaptability to fluctuations in salt concentrations, as it can grow without NaCl as well as in the presence of up to 5 M NaCl. On the other hand, W. ichthyophaga requires at least 1.5 M NaCl for growth, but also grows in up to 5 M NaCl. Our studies have revealed the novel and intricate molecular mechanisms used by these fungi to combat high salt concentrations, which differ in many aspects between the extremely halotolerant H. werneckii and the halophilic W. ichthyophaga. Specifically, the high osmolarity glycerol signaling pathway that is important for sensing and responding to increased salt concentrations is here compared between H. werneckii and W. ichthyophaga. In both of these fungi, the key signaling components are conserved, but there are structural and regulation differences between these pathways in H. werneckii and W. ichthyophaga. We also address differences that have been revealed from analysis of their newly sequenced genomes. The most striking characteristics associated with H. werneckii are the large genetic redundancy, the expansion of genes encoding metal cation transporters, and a relatively recent whole genome duplication. In contrast, the genome of W. ichthyophaga is very compact, as only 4884 protein-coding genes are predicted, which cover almost three quarters of the sequence. Importantly, there has been a significant increase in their hydrophobins, cell-wall proteins that have multiple cellular functions.

15.
PLoS One ; 8(12): e81872, 2013.
Article En | MEDLINE | ID: mdl-24349144

Soil salinity and drought are among the most serious agricultural and environmental problems of today. Therefore, investigations of plant resistance to abiotic stress have received a lot of attention in recent years. In this study, we identified the complete coding sequence of a 3'-phosphoadenosine-5'-phosphatase protein, ApHal2, from the halotolerant yeast Aureobasidium pullulans. Expression of the ApHAL2 gene in a Saccharomyces cerevisiae hal2 mutant complemented the mutant auxotrophy for methionine, and rescued the growth of the hal2 mutant in media with high NaCl concentrations. A 21-amino-acids-long region of the ApHal2 enzyme was inserted into the Arabidopsis thaliana homologue of Hal2, the SAL1 phosphatase. The inserted sequence included the META motif, which has previously been implicated in increased sodium tolerance of the Hal2 homologue from a related fungal species. Transgenic Arabidopsis plants overexpressing this modified SAL1 (mSAL1) showed improved halotolerance and drought tolerance. In a medium with an elevated salt concentration, mSAL1-expressing plants were twice as likely to have roots in a higher length category in comparison with the wild-type Arabidopsis and with plants overexpressing the native SAL1, and had 5% to 10% larger leaf surface area under moderate and severe salt stress, respectively. Similarly, after moderate drought exposure, the mSAL1-expressing plants showed 14% increased dry weight after revitalisation, with no increase in dry weight of the wild-type plants. With severe drought, plants overexpressing native SAL1 had the worst rehydration success, consistent with the recently proposed role of SAL1 in severe drought. This was not observed for plants expressing mSAL1. Therefore, the presence of this fungal META motif sequence is beneficial under conditions of increased salinity and moderate drought, and shows no drawbacks for plant survival under severe drought. This demonstrates that adaptations of extremotolerant fungi should be considered as a valuable resource for improving stress-tolerance in plant breeding in the future.


Arabidopsis Proteins/chemistry , Arabidopsis/genetics , Fungal Proteins/chemistry , Nucleotidases/chemistry , Saccharomycetales/genetics , Salt Tolerance/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Amino Acid Motifs , Arabidopsis/drug effects , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Droughts , Escherichia coli/genetics , Escherichia coli/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Nucleotidases/genetics , Nucleotidases/metabolism , Phosphoric Monoester Hydrolases , Plants, Genetically Modified , Protein Engineering , Protein Structure, Tertiary , Saccharomycetales/drug effects , Saccharomycetales/enzymology , Salinity , Sequence Alignment , Sodium Chloride/pharmacology , Transformation, Genetic
16.
PLoS One ; 8(8): e71328, 2013.
Article En | MEDLINE | ID: mdl-23977017

Hortaea werneckii, ascomycetous yeast from the order Capnodiales, shows an exceptional adaptability to osmotically stressful conditions. To investigate this unusual phenotype we obtained a draft genomic sequence of a H. werneckii strain isolated from hypersaline water of solar saltern. Two of its most striking characteristics that may be associated with a halotolerant lifestyle are the large genetic redundancy and the expansion of genes encoding metal cation transporters. Although no sexual state of H. werneckii has yet been described, a mating locus with characteristics of heterothallic fungi was found. The total assembly size of the genome is 51.6 Mb, larger than most phylogenetically related fungi, coding for almost twice the usual number of predicted genes (23333). The genome appears to have experienced a relatively recent whole genome duplication, and contains two highly identical gene copies of almost every protein. This is consistent with some previous studies that reported increases in genomic DNA content triggered by exposure to salt stress. In hypersaline conditions transmembrane ion transport is of utmost importance. The analysis of predicted metal cation transporters showed that most types of transporters experienced several gene duplications at various points during their evolution. Consequently they are present in much higher numbers than expected. The resulting diversity of transporters presents interesting biotechnological opportunities for improvement of halotolerance of salt-sensitive species. The involvement of plasma P-type H⁺ ATPases in adaptation to different concentrations of salt was indicated by their salt dependent transcription. This was not the case with vacuolar H⁺ ATPases, which were transcribed constitutively. The availability of this genomic sequence is expected to promote the research of H. werneckii. Studying its extreme halotolerance will not only contribute to our understanding of life in hypersaline environments, but should also identify targets for improving the salt- and osmotolerance of economically important plants and microorganisms.


Cation Transport Proteins/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genome, Fungal , Saccharomycetales/genetics , Salt Tolerance/genetics , Amino Acid Sequence , Cation Transport Proteins/classification , Cation Transport Proteins/metabolism , Fungal Proteins/classification , Fungal Proteins/metabolism , Gene Dosage , Gene Duplication , Genome Size , Ion Transport , Molecular Sequence Data , Osmotic Pressure , Phylogeny , Saccharomycetales/classification , Saccharomycetales/metabolism , Salts/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sodium Chloride
17.
Fungal Biol ; 117(5): 368-79, 2013 May.
Article En | MEDLINE | ID: mdl-23719222

Melanin has an important role in the ability of fungi to survive extreme conditions, like the high NaCl concentrations that are typical of hypersaline environments. The black fungus Hortaea werneckii that has been isolated from such environments has 1,8-dihydroxynaphthalene-melanin incorporated into the cell wall, which minimises the loss of glycerol at low NaCl concentrations. To further explore the role of melanin in the extremely halotolerant character of H. werneckii, we studied the effects of several melanin biosynthesis inhibitors on its growth, pigmentation and cell morphology. The most potent inhibitors were a 2,3-dihydrobenzofuran derivative and tricyclazole, which restricted the growth of H. werneckii on high-salinity media, as shown by growth curves and plate-drop assays. These inhibitors promoted release of the pigments from the H. werneckii cell surface and changed the medium colour. Inhibitor-treated H. werneckii cells exposed to high salinity showed both decreased and increased cell lengths. We speculate that this absence of melanin perturbs the integrity of the cell wall in H. werneckii, which affects its cell division and exposes it to the harmful effects of high NaCl concentrations. Surprisingly, melanin had no effect on H. werneckii survival under H2O2 oxidative stress.


Ascomycota/growth & development , Ascomycota/metabolism , Melanins/metabolism , Sodium Chloride/metabolism , Ascomycota/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Oxidative Stress
18.
Extremophiles ; 17(4): 623-36, 2013 Jul.
Article En | MEDLINE | ID: mdl-23712906

The high-osmolarity glycerol (HOG) pathway is one of the several MAP kinase cascades in fungi. It is the main signal transduction system that is responsible for cellular stress responses, and has primarily been studied in the context of osmotic stress. In the present study, we provide the first insights into the HOG pathway of the obligatory halophilic basidiomycetous fungus Wallemia ichthyophaga, with the characterisation of its two Hog1-like kinases: WiHog1A and WiHog1B. These share high similarity to Hog1 kinase from Saccharomyces cerevisiae (ScHog1) at the level of amino-acid sequence. While WiHog1A could not optimally complement the function of ScHog1, WiHog1B was a fully functional Hog1-like kinase and could improve the halotolerance of the yeast, compared to the wild-type or the ScHog1-expressing hog1Δ strain. In W. ichthyophaga cells, Hog1 was constitutively phosphorylated under optimal osmotic conditions and dephosphorylated when the cells were challenged with hypo-osmolar or hyperosmolar stress. This pattern of phosphorylation kinetics is opposite to that of yeast. Transcriptional analysis of these two kinases in W. ichthyophaga shows that WiHOG1B is more responsive to changes in NaCl concentrations than WiHOG1A. Our identification and characterisation of these Hog1-like kinases from W. ichthyophaga confirm the existence of the HOG signalling pathway and its role in osmosensing in this halophilic fungus.


Basidiomycota/enzymology , Fungal Proteins/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Amino Acid Sequence , Basidiomycota/genetics , Basidiomycota/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Molecular Sequence Data , Mutation , Osmotic Pressure , Phosphorylation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
19.
Prog Mol Subcell Biol ; 53: 133-58, 2012.
Article En | MEDLINE | ID: mdl-22222830

Solar salterns are constructed as shallow multi-pond systems for the production of halite through evaporation of seawater. The main feature of salterns is the discontinuous salinity gradient that provides a range of well-defined habitats with increasing salinities, from moderate to hypersaline. These present one of the most extreme environments, because of the low levels of biologically available water and the toxic concentrations of ions. Up to the year 2000, hypersaline environments were considered to be populated almost exclusively by prokaryotic microorganisms till fungi were reported to be active inhabitants of solar salterns. Since then, numerous fungal species have been described in hypersaline waters around the world. The mycobiota of salterns is represented by different species of the genus Cladosporium and the related meristematic melanized black yeasts, of non-melanized yeasts, of the filamentous genera Penicillium and Aspergillus and their teleomorphic forms (Eurotium and Emericella), and of the basidiomycetous genus Wallemia. Among these, two species became new model organisms for studying the mechanisms of extreme salt tolerance: the extremely halotolerant ascomycetous black yeast Hortaea werneckii and the obligate halophilic basidiomycete Wallemia ichthyophaga.


Salinity , Sodium Chloride , Ascomycota , Ecosystem , Fungi/classification , Salt Tolerance , Seawater/microbiology , Yeasts
20.
Adv Appl Microbiol ; 77: 71-96, 2011.
Article En | MEDLINE | ID: mdl-22050822

Hypersaline environments support substantial microbial communities of selected halotolerant and halophilic organisms, including fungi from various orders. In hypersaline water of solar salterns, the black yeast Hortaea werneckii is by far the most successful fungal representative. It has an outstanding ability to overcome the turgor loss and sodium toxicity that are typical for hypersaline environments, which facilitates its growth even in solutions that are almost saturated with NaCl. We propose a model of cellular responses to high salt concentrations that integrates the current knowledge of H. werneckii adaptations. The negative impact of a hyperosmolar environment is counteracted by an increase in the energy supply that is needed to drive the energy-demanding export of ions and synthesis of compatible solutes. Changes in membrane lipid composition and cell-wall structure maintain the integrity and functioning of the stressed cells. Understanding the salt responses of H. werneckii and other fungi (e.g., the halophilic Wallemia ichthyophaga) will extend our knowledge of fungal stress tolerance and promote the use of the currently unexploited biotechnological potential of fungi that live in hypersaline environments.


Fungi , Sodium Chloride , Acclimatization , Adaptation, Physiological , Ascomycota , Fungal Proteins/genetics , Fungi/metabolism , Gene Expression Regulation, Fungal , Phylogeny , Sodium Chloride, Dietary
...