Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Hum Reprod ; 10(6): 445-60, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15044607

ABSTRACT

Preimplantation HLA matching has recently emerged as a tool for couples desiring to conceive a potential donor progeny for transplantation in a sibling with a life-threatening disorder. In this paper we describe a strategy optimized for preimplantation genetic diagnosis (PGD) of haemoglobinopathies combined with HLA matching. This procedure involves a minisequencing-based genotyping of HLA regions A, B, C and DRB combined with mutation analysis of the gene regions involved by mutation. Analysis of at least eight polymorphic short tandem repeat (STR) markers scattered through the HLA complex has also been included to detect potential contamination and crossing-over occurrences between HLA genes. The above assay can also be used for preimplantation HLA matching as a primary indication. The strategy was clinically applied for HLA matching in 17 cycles (14 for beta-thalassaemia, one for Wiscott-Aldrich syndrome and two for leukaemia). A reliable HLA genotype was achieved in 255/266 (95.9%) of the blastomeres. In total, 22 (14.8%) embryos were obtained that were HLA-matched with the affected siblings, 14 (9.4%) of which were unaffected and transferred back to the patients. Four clinical pregnancies were obtained, three of which (one twin, two singletons) are ongoing and were confirmed as healthy and HLA-identical with the affected children. Minisequencing-based HLA typing combined with HLA STR haplotyping has been shown to be a reliable strategy for preimplantation HLA matching. The major advantage of this approach is that the validation of a single assay can be done once and then used for the majority of the patients, reducing notably time needed for preclinical set-up of each case.


Subject(s)
Genetic Diseases, Inborn/diagnosis , HLA Antigens/genetics , Histocompatibility Testing/methods , Preimplantation Diagnosis/methods , Blastocyst/physiology , DNA Mutational Analysis , Embryo Transfer , Female , Humans , Major Histocompatibility Complex , Microsatellite Repeats , Polymorphism, Genetic , Pregnancy , Pregnancy Outcome
2.
Reprod Biomed Online ; 7(5): 558-62, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14680548

ABSTRACT

The X-linked dominant form of Charcot-Marie-Tooth syndrome (CMTX) is a clinically and genetically heterogeneous hereditary disorder of the peripheral nerves caused by mutations in the GJB1 gene that encodes a gap junction protein named connexin 32 (Cx32). Clinically, CMTX is characterized by peripheral motor and sensory deficit with muscle atrophy. A couple with a previous history of pregnancy termination after being diagnosed positive for CMTX by chorionic villus sampling, was referred for preimplantation genetic diagnosis (PGD). The female partner carried the causative H94Q, characterized by a C-->G substitution in codon 94 of exon 2 of the GJB1 gene. Embryos obtained after intracytoplasmic sperm injection (ICSI) were evaluated for the presence of the mother's mutation using polymerase chain reaction (PCR), followed by mutation analysis performed using the minisequencing method. Amelogenin sequences on the X and Y chromosomes were also co-amplified to provide a correlation between embryo gender and mutation presence. A single PGD cycle was performed, involving nine fertilized oocytes, five of which developed into good quality embryos useful for biopsy. Two unaffected embryos were transferred, resulting in a singleton pregnancy followed by the birth of a healthy female.


Subject(s)
Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Chromosomes, Human, X , Preimplantation Diagnosis , Adult , Amelogenin , Connexins/genetics , DNA Mutational Analysis , Dental Enamel Proteins/genetics , Embryo Transfer , Female , Genetic Linkage , Humans , Male , Mutation , Polymerase Chain Reaction , Sperm Injections, Intracytoplasmic , Gap Junction beta-1 Protein
3.
Mol Hum Reprod ; 9(7): 399-410, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12802047

ABSTRACT

We have applied a new method of genetic analysis, called 'minisequencing', to preimplantation genetic diagnosis (PGD) of monogenic disorders from single cells. This method involves computer-assisted mutation analysis, which allows exact base identity determination and computer-assisted visualization of the specific mutation(s), and thus facilitates data interpretation and management. Sequencing of the entire PCR product is unnecessary, yet the same qualitative characteristics of sequence analysis are maintained. The main benefit of the minisequencing strategy is the use of a mutation analysis protocol based on a common procedure, irrespective of the mutations involved. To evaluate the reliability of this method for subsequent application to PGD, we analysed PCR products from 887 blastomeres including 55 PGD cases of different genetic diseases, such as cystic fibrosis, beta-thalassaemia, sickle cell anaemia, haemophilia A, retinoblastoma, and spinal muscular atrophy. Minisequencing was found to be a useful technique in PGD analysis, due to its elevated sensitivity, automation, and easy data interpretation. The method was also efficient, providing interpretable results in 96.5% (856/887) of the blastomeres tested. Fifteen clinical pregnancies resulted from these PGD cases; conventional prenatal diagnosis confirmed all the PGD results, and 10 healthy babies have already been born. Its applicability to PGD could be helpful, particularly in cases in which the mutation(s) involved are difficult to assess by restriction analysis or other commonly used methods.


Subject(s)
Preimplantation Diagnosis , Reproducibility of Results , Blastomeres , DNA Mutational Analysis , Humans , Polymerase Chain Reaction , beta-Thalassemia
SELECTION OF CITATIONS
SEARCH DETAIL