Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Scand J Med Sci Sports ; 34(4): e14612, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545946

ABSTRACT

INTRODUCTION: Liver fat (LF) and visceral adipose tissue (VAT) content decreases with training, however, this has mainly been investigated in sedentary obese or healthy participants. The aim of this study was to investigate the effects of repeated prolonged exercise on LF and VAT content in well-trained older men and to compare baseline LF and VAT content to recreationally active older men. METHOD: A group of five well-trained older men were tested before and after cycling a total distance of 2558 km in 16 consecutive days. VAT content and body composition was measured using DXA before a bicycle ergometer test was performed to determine maximal fat oxidation (MFO), maximal oxygen consumption ( VO 2 max $$ {\mathrm{VO}}_{2_{\mathrm{max}}} $$ ), and the relative intensity at which MFO occurred (Fatmax). LF content was measured on a separate day using MRI. For comparison of baseline values, a control group of eight healthy age- and BMI-matched recreationally active men were recruited. RESULTS: The well-trained older men had lower VAT (p = 0.02), and a tendency toward lower LF content (p = 0.06) compared with the control group. The intervention resulted in decreased LF content (p = 0.02), but VAT, fat mass, and lean mass remained unchanged. VO 2 max $$ {\mathrm{VO}}_{2_{\mathrm{max}}} $$ , MFO, and Fatmax were not affected by the intervention. CONCLUSION: The study found that repeated prolonged exercise reduced LF content, but VAT and VO 2 max $$ {\mathrm{VO}}_{2_{\mathrm{max}}} $$ remained unchanged. Aerobic capacity was aligned with lower LF and VAT in older active men.


Subject(s)
Exercise , Intra-Abdominal Fat , Male , Humans , Aged , Obesity/metabolism , Liver/diagnostic imaging , Exercise Test , Adipose Tissue/metabolism , Oxygen Consumption
2.
Front Physiol ; 12: 696261, 2021.
Article in English | MEDLINE | ID: mdl-34408659

ABSTRACT

Introduction: In men, whole body peak fat oxidation (PFO) determined by a graded exercise test is closely tied to plasma free fatty acid (FFA) availability. Men and women exhibit divergent metabolic responses to fasting and exercise, and it remains unknown how the combined fasting and exercise affect substrate utilization in women. We aimed to investigate this, hypothesizing that increased plasma FFA concentrations in women caused by fasting and repeated exercise will increase PFO during exercise. Then, that PFO would be higher in women compared with men (data from a previous study). Methods: On two separate days, 11 young endurance-trained women were investigated, either after an overnight fast (Fast) or 3.5 h after a standardized meal (Fed). On each day, a validated graded exercise protocol (GXT), used to establish PFO by indirect calorimetry, was performed four times separated by 3.5 h of bed rest both in the fasted (Fast) or fed (Fed) state. Results: Peak fat oxidation increased in the fasted state from 11 ± 3 (after an overnight fast, Fast 1) to 16 ± 3 (mean ± SD) mg/min/kg lean body mass (LBM) (after ~22 h fast, Fast 4), and this was highly associated with plasma FFA concentrations, which increased from 404 ± 203 (Fast 1) to 865 ± 210 µmol/L (Fast 4). No increase in PFO was found during the fed condition with repeated exercise. Compared with trained men from a former identical study, we found no sex differences in relative PFO (mg/min/kg LBM) between men and women, in spite of significant differences in plasma FFA concentrations during exercise after fasting. Conclusion: Peak fat oxidation increased with fasting and repeated exercise in trained women, but the relative PFO was similar in young trained men and women, despite major differences in plasma lipid concentrations during graded exercise.

SELECTION OF CITATIONS
SEARCH DETAIL
...