Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(8): 7438-7447, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36872975

ABSTRACT

Lignin particles were recovered from the bagasse soda pulping black liquor by acidification with carbon dioxide continuously fed in a semibatch reactor. An experimental model based on the response surface methodology was selected to investigate the effect of parameters and optimize the process for maximizing the lignin yield, and the physicochemical properties of the obtained lignin under the optimum conditions were investigated for further potential applications. A total of 15 experimental runs of three controlled parameters including temperature, pressure, and residence time were carried out based on the Box-Behnken design (BBD). The mathematic model for lignin yield prediction was successfully estimated at 99.7% accuracy. Temperature played a more significant role in lignin yield than pressure and residence time. Higher temperature could faciltate a higher lignin yield. Approximately 85 wt % lignin yield was obtained under the optimum conditions with a purity higher than 90%, high thermal stability, and slightly broad molecular weight distribution. The p-hydroxyphenyl-guaiacyl-syringyl (HGS)-type lignin structure and spherical shape were confirmed by Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FE-SEM). These characteristics confirmed that the obtained lignin could be used in high-value products. Moreover, this work indicated that the CO2 acidification unit for lignin recovery could be efficiently improved for achieving high yield and purity from black liquor by adjustment of the process.

2.
J Biomed Mater Res B Appl Biomater ; 111(6): 1207-1223, 2023 06.
Article in English | MEDLINE | ID: mdl-36718607

ABSTRACT

Cuttlebone (CB) is a marine waste-derived biomaterial and a rich source of calcium carbonate for the biosynthesis of the calcium phosphate (CaP) particles. The current study aimed to synthesize CB derived biphasic calcium phosphate (CB-BCP) and investigate biological activity of the CB-CaP: hydroxyapatite (CB-HA), beta-tricalcium phosphate (CB-b-TCP) and biphasic 60:40 (w/w) HA/b-TCP (CB-BCP) with the human dental pulp stem cells (hDPSCs). The particles were synthesized using solid state reactions under mild condition and properties of the particles were compared with a commercial BCP as a reference material. Morphology, particle size, physicochemical properties, mineral contents, and the ion released patterns of the particles were examined. Then the particle/cell interaction, cell cytotoxicity and osteogenic property of the particles were investigated in the direct and indirect cell culture models. It was found that an average particles size of the CB-HA was 304.73 ± 4.19 nm, CB-b-TCP, 503.17 ± 23.06 nm and CB-BCP, 1394.67 ± 168.19 nm. The physicochemical characteristics of the CB-CaP were consistent with the HA, b-TCP and BCP. The highest level of calcium (Ca) was found in the mineral contents and the preincubated medium of the CB-BCP and traces of fluoride, magnesium, strontium, and zinc were identified in the CB-CaP. The cell cytotoxicity and osteogenic property of the particles were dose dependent. The particles adhered on cell surface and were internalized into the cell cytoplasm. The CB-BCP and CB-HA indirectly and directly promote osteoblastic differentiations of the hDPSCs in stronger levels than other groups. The CB-BCP and CB-HA were potential bioactive bone substitute materials.


Subject(s)
Bone Substitutes , Humans , Bone Substitutes/pharmacology , Bone Substitutes/chemistry , Hydroxyapatites/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Durapatite/chemistry , Calcium Phosphates/pharmacology , Calcium Phosphates/chemistry
3.
Nanomaterials (Basel) ; 14(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38202536

ABSTRACT

The incorporation of carbon nanotubes into cementitious composites increases their compressive and flexural strength, as well as their electrical and thermal conductivity. Multiwalled carbon nanotubes (MWCNTs) covalently functionalized with hydroxyl and carboxyl moieties are thought to offer superior performance over bare nanotubes, based on the chemistry of cement binder and nanotubes. Anionic carboxylate can bind to cationic calcium in the hydration products, while hydroxyl groups participate in hydrogen bonding to anionic and nonionic oxygen atoms. Results in the literature for mechanical properties vary widely for both bare and modified filler, so any added benefits with functionalization are not clearly evident. This mini-review seeks to resolve the issue using an analysis of reports where direct comparisons of cementitious composites with plain and functionalized nanotubes were made at the same concentrations, with the same methods of preparation and under the same conditions of testing. A focus on observations related to the mechanisms underlying the enhancement of mechanical strength and conductivity helps to clarify the benefits of using functionalized MWCNTs.

4.
Nanomaterials (Basel) ; 11(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919746

ABSTRACT

Several types of hematite nanoparticles (α-Fe2O3) have been investigated for their effects on the structure and properties of fly ash (FA) blended cement. All synthesized nanoparticles were found to be of spherical shape, but of different particle sizes ranging from 10 to 195 nm depending on the surfactant used in their preparation. The cement hydration with time showed 1.0% α-Fe2O3 nanoparticles are effective accelerators for FA blended cement. Moreover, adding α-Fe2O3 nanoparticles in FA blended cement enhanced the compressive strength and workability of cement. Nanoparticle size and size distribution were important for optimal filling of various size of pores within the cement structure.

5.
J Colloid Interface Sci ; 281(2): 307-15, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15571686

ABSTRACT

Thin polystyrene film coated on cotton was successfully formed by admicellar polymerization. Divinylbenzene (DVB) was used as a cross-linking agent to form networked polystyrene to improve film coverage. A wettability test and XPS analysis were used to characterize the coated surface. The optimum amount of DVB was around 1%. At this amount, the film coverage was most complete, as judged by the reduction of the O1s signal in XPS analysis.

6.
J Colloid Interface Sci ; 249(1): 227-34, 2002 May 01.
Article in English | MEDLINE | ID: mdl-16290590

ABSTRACT

Thin-film coating on cotton by the admicellar polymerization process was investigated. In this work, styrene was used as the monomer to coat styrene on cotton. The effects of surfactant, styrene, initiator, and electrolyte concentrations on the polymerization process were determined. The polystyrene film formed was characterized by SEM, FTIR, and GPC. The increase in the hydrophobicity of the treated cotton surface was determined by the drop test. Results show that polystyrene thin film was successfully formed on cotton, resulting in cotton that can resist wetting by a water droplet for longer than 30 min.

SELECTION OF CITATIONS
SEARCH DETAIL