Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Vaccines (Basel) ; 12(9)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39340066

ABSTRACT

Seasonal influenza vaccine effectiveness is low. Carbohydrate fatty acid monosulphate ester (CMS), a new oil-in-water adjuvant, has proven potency in animal models with suggested capacity for dose-sparing. The objective was to evaluate safety and immunogenicity of CMS when added to a low-dose influenza vaccine (QIV) in humans. In a randomised, double-blind, active-controlled, first-in-human study, sixty participants (18-50 years) received either 0.5 mg CMS or 2 mg CMS with 1/5th dose QIV, or a full dose QIV without CMS. Adverse events (AE) were monitored until 7 days post-vaccination. Haemagglutinin inhibition (HI) titres in serum and CD4+ T cells in PBMCs were determined at day 0, 7, 28, and 180. Mean age was 37.6 (±10.1) years and 42/60 (70.0%) were female. Pain at injection site (42/60, 86.7%) and headache (34/60, 56.7%) were reported most and more frequently in the 2 mg CMS group. HI titres and the frequency of influenza specific CD4+ T cells were equal across strains for the three cohorts on all visits, increased until day 28 and decreased at day 180 to values higher than baseline. CMS was safe in humans. Humoral and cell-mediated immunogenicity was similar across vaccines, even with 1/5th antigen dose. CMS can have beneficial implications in low-resource settings or in a pandemic context.

2.
Lancet Infect Dis ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39068957

ABSTRACT

BACKGROUND: Rift Valley fever virus, a pathogen to ruminants, camelids, and humans, is an emerging mosquito-borne bunyavirus currently endemic to Africa and the Arabian Peninsula. Although animals are primarily infected via mosquito bites, humans mainly become infected following contact with infected tissues or fluids of infected animals. There is an urgent need for adequate countermeasures, especially for humans, because effective therapeutics or vaccines are not yet available. Here we assessed the safety, tolerability, and immunogenicity of a next-generation, four-segmented, live-attenuated vaccine candidate, referred to as hRVFV-4s, in humans. METHODS: A first-in-human, single-centre, randomised, double-blind, placebo-controlled trial was done in Belgium in which a single dose of hRVFV-4s was administered to healthy volunteers aged 18-45 years. Participants were randomly assigned using an interactive web response system. The study population encompassed 75 participants naive to Rift Valley fever virus infection, divided over three dosage groups (cohorts) of 25 participants each. All participants were followed up until 6 months. Using a staggered dose escalating approach, 20 individuals of each cohort were injected in the deltoid muscle of the non-dominant arm with either 104 (low dose), 105 (medium dose), or 106 (high dose) of 50% tissue culture infectious dose of hRVFV-4s as based on animal data, and five individuals per cohort received formulation buffer as a placebo. Primary outcome measures in the intention-to-treat population were adverse events and tolerability. Secondary outcome measures were vaccine-induced viraemia, vaccine virus shedding, Rift Valley fever virus nucleocapsid antibody responses (with ELISA), and neutralising antibody titres. Furthermore, exploratory objectives included the assessment of cellular immune responses by ELISpot. The trial was registered with the EU Clinical Trials Register, 2022-501460-17-00. FINDINGS: Between August and December, 2022, all 75 participants were vaccinated. No serious adverse events or vaccine-related severe adverse events were reported. Pain at the injection site (51 [85%] of 60 participants) was most frequently reported as solicited local adverse event, and headache (28 [47%] of 60) and fatigue (28 [47%] of 60) as solicited systemic adverse events in the active group. No vaccine virus RNA was detected in any of the blood, saliva, urine, or semen samples. Rift Valley fever virus nucleocapsid antibody responses were detected in most participants who were vaccinated with hRVFV-4s (43 [72%] of 60 on day 14) irrespective of the administered dose. In contrast, a clear dose-response relationship was observed for neutralising antibodies on day 28 with four (20%) of 20 participants responding in the low-dose group, 13 (65%) of 20 responding in the medium-dose group, and all participants (20 [100%] of 20) responding in the high-dose group. Consistent with the antibody responses, cellular immune responses against the nucleocapsid protein were detected in all dose groups, whereas a more dose-dependent response was observed for the Gn and Gc surface glycoproteins. Neutralising antibody titres declined over time, whereas nucleocapsid antibody responses remained relatively stable for at least 6 months. INTERPRETATION: The hRVFV-4s vaccine showed a high safety profile and excellent tolerability across all tested dose regimens, eliciting robust immune responses, particularly with the high-dose administration. The findings strongly support further clinical development of this candidate vaccine for human use. FUNDING: The Coalition for Epidemic Preparedness Innovations with support from the EU Horizon 2020 programme.

SELECTION OF CITATIONS
SEARCH DETAIL