Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
2.
J Psychosom Res ; 179: 111640, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484496

ABSTRACT

BACKGROUND: Catatonia is a challenging and heterogeneous neuropsychiatric syndrome of motor, affective and behavioral dysregulation which has been associated with multiple disorders such as structural brain lesions, systemic diseases, and psychiatric disorders. This systematic review summarized and compared functional neuroimaging abnormalities in catatonia associated with psychiatric and medical conditions. METHODS: Using PRISMA methods, we completed a systematic review of 6 databases from inception to February 7th, 2024 of patients with catatonia that had functional neuroimaging performed. RESULTS: A total of 309 studies were identified through the systematic search and 62 met the criteria for full-text review. A total of 15 studies reported patients with catatonia associated with a psychiatric disorder (n = 241) and one study reported catatonia associated with another medical condition, involving patients with N-methyl-d-aspartate receptor antibody encephalitis (n = 23). Findings varied across disorders, with hyperactivity observed in areas like the prefrontal cortex (PFC), the supplementary motor area (SMA) and the ventral pre-motor cortex in acute catatonia associated to a psychiatric disorder, hypoactivity in PFC, the parietal cortex, and the SMA in catatonia associated to a medical condition, and mixed metabolic activity in the study on catatonia linked to a medical condition. CONCLUSION: Findings support the theory of dysfunction in cortico-striatal-thalamic, cortico-cerebellar, anterior cingulate-medial orbitofrontal, and lateral orbitofrontal networks in catatonia. However, the majority of the literature focuses on schizophrenia spectrum disorders, leaving the pathophysiologic characteristics of catatonia in other disorders less understood. This review highlights the need for further research to elucidate the pathophysiology of catatonia across various disorders.


Subject(s)
Catatonia , Schizophrenia , Humans , Catatonia/diagnostic imaging , Catatonia/pathology , Syndrome , Functional Neuroimaging
4.
J Inherit Metab Dis ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321717

ABSTRACT

This study aimed to evaluate the effect of intrathecal (IT) recombinant human arylsulfatase A (rhASA) on magnetic resonance imaging (MRI)-assessed brain tissue changes in children with metachromatic leukodystrophy (MLD). In total, 510 MRI scans were collected from 12 intravenous (IV) rhASA-treated children with MLD, 24 IT rhASA-treated children with MLD, 32 children with untreated MLD, and 156 normally developing children. Linear mixed models were fitted to analyze the time courses of gray matter (GM) volume and fractional anisotropy (FA) in the posterior limb of the internal capsule. Time courses for demyelination load and FA in the centrum semiovale were visualized using locally estimated scatterplot smoothing regression curves. All assessed imaging parameters demonstrated structural evidence of neurological deterioration in children with MLD. GM volume was significantly lower at follow-up (median duration, 104 weeks) in IV rhASA-treated versus IT rhASA-treated children. GM volume decline over time was steeper in children receiving low-dose (10 or 30 mg) versus high-dose (100 mg) IT rhASA. Similar effects were observed for demyelination. FA in the posterior limb of the internal capsule showed a higher trend over time in IT rhASA-treated versus children with untreated MLD, but FA parameters were not different between children receiving the low doses versus those receiving the high dose. GM volume in IT rhASA-treated children showed a strong positive correlation with 88-item Gross Motor Function Measure score over time. In some children with MLD, IT administration of high-dose rhASA may delay neurological deterioration (assessed using MRI), offering potential therapeutic benefit.

5.
Neurogastroenterol Motil ; 36(1): e14695, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926943

ABSTRACT

BACKGROUND: Food intake is regulated by homeostatic and hedonic systems that interact in a complex neuro-hormonal network. Dysregulation in energy intake can lead to obesity (OB) or anorexia nervosa (AN). However, little is known about the neurohormonal response patterns to food intake in normal weight (NW), OB, and AN. MATERIAL & METHODS: During an ad libitum nutrient drink (Ensure®) test (NDT), participants underwent three pseudo-continuous arterial spin labeling (pCASL) MRI scans. The first scan was performed before starting the NDT after a > 12 h overnight fast (Hunger), the second after reaching maximal fullness (Satiation), and the third 30-min after satiation (postprandial fullness). We measured blood levels of ghrelin, cholecystokinin (CCK), glucagon-like peptide (GLP-1), and peptide YY (PYY) with every pCASL-MRI scan. Semiquantitative cerebral blood flow (CBF) maps in mL/100 gr brain/min were calculated and normalized (nCBF) with the CBF in the frontoparietal white matter. The hypothalamus (HT), nucleus accumbens [NAc] and dorsal striatum [DS] were selected as regions of interest (ROIs). RESULTS: A total of 53 participants, 7 with AN, 17 with NW (body-mass index [BMI] 18.5-24.9 kg/m2 ), and 29 with OB (BMI ≥30 kg/m2 ) completed the study. The NW group had a progressive decrease in all five ROIs during the three stages of food intake (hunger, satiation, and post-prandial fullness). In contrast, participants with OB showed a minimal change from hunger to postprandial fullness in all five ROIs. The AN group had a sustained nCBF in the HT and DS, from hunger to satiation, with a subsequent decrease in nCBF from satiation to postprandial fullness. All three groups had similar hormonal response patterns with a decrease in ghrelin, an increase in GLP-1 and PYY, and no change in CCK. CONCLUSION: Conditions of regulated (NW) and dysregulated (OB and AN) energy intake are associated with distinctive neurohormonal activity patterns in response to hunger, satiation, and postprandial fullness.


Subject(s)
Anorexia Nervosa , Hunger , Humans , Hunger/physiology , Ghrelin , Satiation/physiology , Obesity , Peptide YY , Cholecystokinin , Glucagon-Like Peptide 1 , Postprandial Period/physiology
7.
Quant Imaging Med Surg ; 13(10): 7304-7337, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37869282

ABSTRACT

This review describes targeted magnetic resonance imaging (tMRI) of small changes in the T1 and the spatial properties of normal or near normal appearing white or gray matter in disease of the brain. It employs divided subtracted inversion recovery (dSIR) and divided reverse subtracted inversion recovery (drSIR) sequences to increase the contrast produced by small changes in T1 by up to 15 times compared to conventional T1-weighted inversion recovery (IR) sequences such as magnetization prepared-rapid acquisition gradient echo (MP-RAGE). This increase in contrast can be used to reveal disease with only small changes in T1 in normal appearing white or gray matter that is not apparent on conventional MP-RAGE, T2-weighted spin echo (T2-wSE) and/or fluid attenuated inversion recovery (T2-FLAIR) images. The small changes in T1 or T2 in disease are insufficient to produce useful contrast with conventional sequences. To produce high contrast dSIR and drSIR sequences typically need to be targeted for the nulling TI of normal white or gray matter, as well as for the sign and size of the change in T1 in these tissues in disease. The dSIR sequence also shows high signal boundaries between white and gray matter. dSIR and drSIR are essentially T1 maps. There is a nearly linear relationship between signal and T1 in the middle domain (mD) of the two sequences which includes T1s between the nulling T1s of the two acquired IR sequences. The drSIR sequence is also very sensitive to reductions in T1 produced by Gadolinium based contrast agents (GBCAs), and when used with rigid body registration to align three-dimensional (3D) isotropic pre and post GBCA images may be of considerable value in showing subtle GBCA enhancement. In serial MRI studies performed at different times, the high signal boundaries generated by dSIR and drSIR sequences can be used with rigid body registration of 3D isotropic images to demonstrate contrast arising from small changes in T1 (without or with GBCA enhancement) as well as small changes in the spatial properties of normal tissues and lesions, such as their site, shape, size and surface. Applications of the sequences in cases of multiple sclerosis (MS) and methamphetamine dependency are illustrated. Using targeted narrow mD dSIR sequences, widespread abnormalities were seen in areas of normal appearing white matter shown with conventional T2-wSE and T2-FLAIR sequences. Understanding of the features of dSIR and drSIR images is facilitated by the use of their T1-bipolar filters; to explain their targeting, signal, contrast, boundaries, T1 mapping and GBCA enhancement. Targeted MRI (tMRI) using dSIR and drSIR sequences may substantially improve clinical MRI of the brain by providing unequivocal demonstration of abnormalities that are not seen with conventional sequences.

8.
Mol Imaging ; 2023: 5864391, 2023.
Article in English | MEDLINE | ID: mdl-37636591

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a disease leading to progressive motor degeneration and ultimately death. It is a complex disease that can take a significantly long time to be diagnosed, as other similar pathological conditions must be ruled out for a definite diagnosis of ALS. Noninvasive imaging of ALS has shed light on disease pathology and altered biochemistry in the ALS brain. Other than magnetic resonance imaging (MRI), two types of functional imaging, positron emission tomography (PET) and single photon emission computed tomography (SPECT), have provided valuable data about what happens in the brain of ALS patients compared to healthy controls. PET imaging has revealed a specific pattern of brain metabolism through [18F]FDG, while other radiotracers have uncovered neuroinflammation, changes in neuronal density, and protein aggregation. SPECT imaging has shown a general decrease in regional cerebral blood flow (rCBF) in ALS patients. This educational review summarizes the current state of ALS imaging with various PET and SPECT radiopharmaceuticals to better understand the pathophysiology of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon , Brain/diagnostic imaging , Fluorodeoxyglucose F18
9.
Biomedicines ; 11(8)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37626817

ABSTRACT

High-frequency repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (L-DLPFC) shows promise as a treatment for treatment-resistant depression in adolescents. Conventional rTMS coil placement strategies include the 5 cm, the Beam F3, and the magnetic resonance imaging (MRI) neuronavigation methods. The purpose of this study was to use electric field (E-field) models to compare the three targeting approaches to a computational E-field optimization coil placement method in depressed adolescents. Ten depressed adolescents (4 females, age: 15.9±1.1) participated in an open-label rTMS treatment study and were offered MRI-guided rTMS five times per week over 6-8 weeks. Head models were generated based on individual MRI images, and E-fields were simulated for the four targeting approaches. Results showed a significant difference in the induced E-fields at the L-DLPFC between the four targeting methods (χ2=24.7, p<0.001). Post hoc pairwise comparisons showed that there was a significant difference between any two of the targeting methods (Holm adjusted p<0.05), with the 5 cm rule producing the weakest E-field (46.0±17.4V/m), followed by the F3 method (87.4±35.4V/m), followed by MRI-guided (112.1±14.6V/m), and followed by the computational approach (130.1±18.1V/m). Variance analysis showed that there was a significant difference in sample variance between the groups (K2=8.0, p<0.05), with F3 having the largest variance. Participants who completed the full course of treatment had median E-fields correlated with depression symptom improvement (r=-0.77, p<0.05). E-field models revealed limitations of scalp-based methods compared to MRI guidance, suggesting computational optimization could enhance dose delivery to the target.

10.
medRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798297

ABSTRACT

Background: A promising treatment option for adolescents with treatment-resistant depression is high-frequency repetitive transcranial magnetic stimulation (rTMS) delivered to the left dorsolateral prefrontal cortex (L-DLPFC). Conventional coil placement strategies for rTMS in adults include the 5-cm rule, the Beam F3 method, and the magnetic resonance imaging (MRI) neuronavigation method. The purpose of this study was to compare the three targeting approaches to a computational E-field optimization coil placement method in depressed adolescents. Methods: Ten consenting and assenting depressed adolescents (4 females, age: 15.9 ± 1.1) participated in an open-label rTMS treatment study. Participants were offered MRI-guided rTMS 5 times per week over 6-8 weeks. To compute the induced E-field, a head model was generated based on MRI images, and a figure-8 TMS coil (Neuronetics) was placed over the L-DLPFC using the four targeting approaches. Results: Results show that there was a significant difference in the induced E-field at the L-DLPFC between the four targeting methods ( χ 2 = 24.7, p < 0.001). Post hoc pairwise comparisons show that there was a significant difference between any two of the targeting methods (Holm adjusted p < 0.05), with the 5-cm rule producing the weakest E-field (46.0 ± 17.4 V/m), followed by the F3 method (87.4 ± 35.4 V/m), followed by the MRI-guided (112.1 ± 14.6 V/m), and followed by the computationally optimized method (130.1 ± 18.1 V/m). The Bartlett test of homogeneity of variances show that there was a significant difference in sample variance between the groups ( K 2 = 8.0, p < 0.05), with F3 having the largest variance. In participants who completed the full course of treatment, the median E-field strength in the L-DLPFC was correlated with the change in depression severity ( r = - 0.77, p < 0.05). Conclusions: The E-field models revealed inadequacies of scalp-based targeting methods compared to MRI-guidance. Computational optimization may further enhance E-field dose delivery to the treatment target.

11.
Ann Clin Transl Neurol ; 10(3): 339-352, 2023 03.
Article in English | MEDLINE | ID: mdl-36759436

ABSTRACT

OBJECTIVE: In this observational study on a cohort of biopsy-proven central nervous system demyelinating disease consistent with MS, we examined the relationship between early-active demyelinating lesion immunopattern (IP) with subsequent clinical course, radiographic progression, and cognitive function. METHODS: Seventy-five patients had at least one early-active lesion on biopsy and were pathologically classified into three immunopatterns based on published criteria. The median time from biopsy at follow-up was 11 years, median age at biopsy - 41, EDSS - 4.0. At last follow-up, the median age was 50, EDSS - 3.0. Clinical examination, cognitive assessment (CogState battery), and 3-Tesla-MRI (MPRAGE/FLAIR/T2/DIR/PSIR/DTI) were obtained. RESULTS: IP-I was identified in 14/75 (19%), IP-II was identified in 41/75 (56%), and IP-III was identified in 18/75 (25%) patients. Patients did not differ significantly by immunopattern in clinical measures at onset or last follow-up. The proportions of disease courses after a median of 11 years were similar across immunopatterns, relapsing-remitting being most common (63%), followed by monophasic (32%). No differences in volumetric or DTI measures were found. CogState performance was similar for most tasks. A slight yet statistically significant difference was identified for episodic memory scores, with IP-III patients recalling one word less on average. INTERPRETATION: In this study, immunopathological heterogeneity of early-active MS lesions identified at biopsy does not correlate with different long-term clinical, neuroimaging or cognitive outcomes. This could be explained by the fact that while active white matter lesions are pathological substrates for relapses, MS progression is driven by mechanisms converging across immunopatterns, regardless of pathogenic mechanisms driving the acute demyelinated plaque.


Subject(s)
Multiple Sclerosis , Humans , Middle Aged , Multiple Sclerosis/diagnosis , Magnetic Resonance Imaging/methods , Central Nervous System , Cognition
12.
Psychiatry Res ; 314: 114655, 2022 08.
Article in English | MEDLINE | ID: mdl-35738038

ABSTRACT

In this pilot study (N = 9), we highlight new insights gained on ketamine's mechanism of action where we have mapped biochemical processes that are affected within 40 min of intravenous ketamine exposure. Targeting acylcarnitines, we demonstrated rapid utilization of short-chain acylcarnitines within 40 min of ketamine treatment followed by restoration within 24 h; this change in short chain acylcarnitine with rapid-acting antidepressant treatment is consistent with previous work identifying similar change but at 8-weeks with slower-acting SSRI treatment. Using a non-targeted metabolomics platform, we defined broader effects of ketamine on lipid metabolism and identified changes in triglyceride that correlate with ketamine response. This study provides novel insights into ketamine's action and highlighting a possible role for mitochondrial function and energy metabolism in ketamine's mechanism of action.


Subject(s)
Depressive Disorder, Treatment-Resistant , Ketamine , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression , Depressive Disorder, Treatment-Resistant/drug therapy , Humans , Ketamine/pharmacology , Ketamine/therapeutic use , Pilot Projects
14.
Brain Sci ; 12(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35447963

ABSTRACT

Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.

15.
J Magn Reson Imaging ; 56(2): 380-390, 2022 08.
Article in English | MEDLINE | ID: mdl-34997786

ABSTRACT

BACKGROUND: Preferential publication of studies with positive findings can lead to overestimation of diagnostic test accuracy (i.e. publication bias). Understanding the contribution of the editorial process to publication bias could inform interventions to optimize the evidence guiding clinical decisions. PURPOSE/HYPOTHESIS: To evaluate whether accuracy estimates, abstract conclusion positivity, and completeness of abstract reporting are associated with acceptance to radiology conferences and journals. STUDY TYPE: Meta-research. POPULATION: Abstracts submitted to radiology conferences (European Society of Gastrointestinal and Abdominal Radiology (ESGAR) and International Society for Magnetic Resonance in Medicine (ISMRM)) from 2008 to 2018 and manuscripts submitted to radiology journals (Radiology, Journal of Magnetic Resonance Imaging [JMRI]) from 2017 to 2018. Primary clinical studies evaluating sensitivity and specificity of a diagnostic imaging test in humans with available editorial decisions were included. ASSESSMENT: Primary variables (Youden's index [YI > 0.8 vs. <0.8], abstract conclusion positivity [positive vs. neutral/negative], number of reported items on the Standards for Reporting of Diagnostic Accuracy Studies [STARD] for Abstract guideline) and confounding variables (prospective vs. retrospective/unreported, sample size, study duration, interobserver agreement assessment, subspecialty, modality) were extracted. STATISTICAL TESTS: Multivariable logistic regression to obtain adjusted odds ratio (OR) as a measure of the association between the primary variables and acceptance by radiology conferences and journals; 95% confidence intervals (CIs) and P-values were obtained; the threshold for statistical significance was P < 0.05. RESULTS: A total of 1000 conference abstracts (500 ESGAR and 500 ISMRM) and 1000 journal manuscripts (505 Radiology and 495 JMRI) were included. Conference abstract acceptance was not significantly associated with YI (adjusted OR = 0.97 for YI > 0.8; CI = 0.70-1.35), conclusion positivity (OR = 1.21 for positive conclusions; CI = 0.75-1.90) or STARD for Abstracts adherence (OR = 0.96 per unit increase in reported items; CI = 0.82-1.18). Manuscripts with positive abstract conclusions were less likely to be accepted by radiology journals (OR = 0.45; CI = 0.24-0.86), while YI (OR = 0.85; CI = 0.56-1.29) and STARD for Abstracts adherence (OR = 1.06; CI = 0.87-1.30) showed no significant association. Positive conclusions were present in 86.7% of submitted conference abstracts and 90.2% of journal manuscripts. DATA CONCLUSION: Diagnostic test accuracy studies with positive findings were not preferentially accepted by the evaluated radiology conferences or journals. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Periodicals as Topic , Radiology , Humans , Prospective Studies , Publication Bias , Retrospective Studies
17.
Int J Neuropsychopharmacol ; 25(8): 619-630, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35089358

ABSTRACT

BACKGROUND: Despite its morbidity and mortality, the neurobiology of treatment-resistant depression (TRD) in adolescents and the impact of treatment on this neurobiology is poorly understood. METHODS: Using automatic segmentation in FreeSurfer, we examined brain magnetic resonance imaging baseline volumetric differences among healthy adolescents (n = 30), adolescents with major depressive disorder (MDD) (n = 19), and adolescents with TRD (n = 34) based on objective antidepressant treatment rating criteria. A pooled subsample of adolescents with TRD were treated with 6 weeks of active (n = 18) or sham (n = 7) 10-Hz transcranial magnetic stimulation (TMS) applied to the left dorsolateral prefrontal cortex. Ten of the adolescents treated with active TMS were part of an open-label trial. The other adolescents treated with active (n = 8) or sham (n = 7) were participants from a randomized controlled trial. RESULTS: Adolescents with TRD and adolescents with MDD had decreased total amygdala (TRD and MDD: -5%, P = .032) and caudal anterior cingulate cortex volumes (TRD: -3%, P = .030; MDD: -.03%, P = .041) compared with healthy adolescents. Six weeks of active TMS increased total amygdala volumes (+4%, P < .001) and the volume of the stimulated left dorsolateral prefrontal cortex (+.4%, P = .026) in adolescents with TRD. CONCLUSIONS: Amygdala volumes were reduced in this sample of adolescents with MDD and TRD. TMS may normalize this volumetric finding, raising the possibility that TMS has neurostructural frontolimbic effects in adolescents with TRD. TMS also appears to have positive effects proximal to the site of stimulation.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Adolescent , Depression , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Depressive Disorder, Treatment-Resistant/therapy , Gyrus Cinguli , Humans , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Transcranial Magnetic Stimulation/methods , Treatment Outcome
18.
J Clin Endocrinol Metab ; 107(2): 346-362, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34614176

ABSTRACT

CONTEXT: Familial partial lipodystrophy (FPL), Dunnigan variety is characterized by skeletal muscle hypertrophy and insulin resistance besides fat loss from the extremities. The cause for the muscle hypertrophy and its functional consequences is not known. OBJECTIVE: To compare muscle strength and endurance, besides muscle protein synthesis rate between subjects with FPL and matched controls (n = 6 in each group). In addition, we studied skeletal muscle mitochondrial function and gene expression pattern to help understand the mechanisms for the observed differences. METHODS: Body composition by dual-energy X-ray absorptiometry, insulin sensitivity by minimal modelling, assessment of peak muscle strength and fatigue, skeletal muscle biopsy and calculation of muscle protein synthesis rate, mitochondrial respirometry, skeletal muscle transcriptome, proteome, and gene set enrichment analysis. RESULTS: Despite increased muscularity, FPL subjects did not demonstrate increased muscle strength but had earlier fatigue on chest press exercise. Decreased mitochondrial state 3 respiration in the presence of fatty acid substrate was noted, concurrent to elevated muscle lactate and decreased long-chain acylcarnitine. Based on gene transcriptome, there was significant downregulation of many critical metabolic pathways involved in mitochondrial biogenesis and function. Moreover, the overall pattern of gene expression was indicative of accelerated aging in FPL subjects. A lower muscle protein synthesis and downregulation of gene transcripts involved in muscle protein catabolism was observed. CONCLUSION: Increased muscularity in FPL is not due to increased muscle protein synthesis and is likely due to reduced muscle protein degradation. Impaired mitochondrial function and altered gene expression likely explain the metabolic abnormalities and skeletal muscle dysfunction in FPL subjects.


Subject(s)
Lipodystrophy, Familial Partial/physiopathology , Mitochondria, Muscle/pathology , Muscle, Skeletal/physiopathology , Absorptiometry, Photon , Adult , Aged , Female , Gene Expression Profiling , Humans , Lipodystrophy, Familial Partial/genetics , Lipodystrophy, Familial Partial/metabolism , Lipodystrophy, Familial Partial/pathology , Male , Middle Aged , Mitochondria, Muscle/metabolism , Muscle Strength/physiology , Muscle, Skeletal/cytology , Muscle, Skeletal/pathology , Physical Endurance/physiology , Proteolysis , Young Adult
19.
Mult Scler ; 28(3): 441-452, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34212755

ABSTRACT

BACKGROUND: Limited studies have described long-term outcomes in pathology confirmed multiple sclerosis (MS). OBJECTIVES: To describe long-term clinical-radiographic-cognitive outcomes in a prospectively followed cohort of patients with pathologically confirmed CNS demyelinating disease, consistent with MS. METHODS: Subjects underwent clinical assessment, standardized 3T-MRI brain, and cognitive battery. RESULTS: Seventy-five patients were included. Biopsied lesion size was ⩾ 2 cm in 62/75. At follow-up, median duration since biopsy was 11 years. Median EDSS was 3 and lesion burden was large (median 10 cm3). At follow-up, 57/75 met MS criteria, 17/75 had clinically isolated syndrome, and 1 radiographic changes only. Disability scores were comparable to a prevalence cohort in Olmsted County (p < 0.001, n = 218). Cognitive outcomes below age-normed standards included psychomotor, attention, working memory, and executive function domains. Total lesion volume and index lesion-related severity correlated with EDSS and cognitive performance. Volumetric cortical/subcortical GM correlated less than lesion metrics to cognitive outcomes. CONCLUSION: Despite early aggressive course in pathologically confirmed MS, its long-term course was comparable to typical MS in our study. Cognitive impairment in this group seemed to correlate strongest to index lesion severity and total lesion volume. It remains to be established how the aggressive nature of the lesion, biopsy, and treatment affect clinical/cognitive outcomes.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Brain/pathology , Cognition , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/pathology , Follow-Up Studies , Humans , Magnetic Resonance Imaging
20.
J Appl Physiol (1985) ; 132(2): 388-401, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34941442

ABSTRACT

Reductions in skeletal muscle mass and function are often reported in patients with cancer-associated weight loss and are associated with reduced quality of life, impaired treatment tolerance, and increased mortality. Although cellular changes, including altered mitochondrial function, have been reported in animals, such changes have been incompletely characterized in humans with cancer. Whole body and skeletal muscle physical function, skeletal muscle mitochondrial function, and whole body protein turnover were assessed in eight patients with cancer-associated weight loss (10.1 ± 4.2% body weight over 6-12 mo) and 19 age-, sex-, and body mass index (BMI)-matched healthy controls to characterize skeletal muscle changes at the whole body, muscle, and cellular level. Potential pathways involved in cancer-induced alterations in metabolism and mitochondrial function were explored by interrogating skeletal muscle and plasma metabolomes. Despite similar lean mass compared with control participants, patients with cancer exhibited reduced habitual physical activity (57% fewer daily steps), cardiorespiratory fitness [22% lower V̇o2peak (mL/kg/min)] and leg strength (35% lower isokinetic knee extensor strength), and greater leg neuromuscular fatigue (36% greater decline in knee extensor torque). Concomitant with these functional declines, patients with cancer had lower mitochondrial oxidative capacity [25% lower State 3 O2 flux (pmol/s/mg tissue)] and ATP production [23% lower State 3 ATP production (pmol/s/mg tissue)] and alterations in phospholipid metabolite profiles indicative of mitochondrial abnormalities. Whole body protein turnover was unchanged. These findings demonstrate mitochondrial abnormalities concomitant with whole body and skeletal muscle functional derangements associated with human cancer, supporting future work studying the role of mitochondria in the muscle deficits associated with cancer.NEW & NOTEWORTHY To our knowledge, this is the first study to suggest that skeletal muscle mitochondrial deficits are associated with cancer-associated weight loss in humans. Mitochondrial deficits were concurrent with reductions in whole body and skeletal muscle functional capacity. Whether mitochondrial deficits are causal or secondary to cancer-associated weight loss and functional deficits remains to be determined, but this study supports further exploration of mitochondria as a driver of cancer-associated losses in muscle mass and function.


Subject(s)
Neoplasms , Quality of Life , Humans , Mitochondria , Muscle, Skeletal/metabolism , Neoplasms/metabolism , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL
...