Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 187(12): 3090-3107.e21, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38749423

ABSTRACT

Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.


Subject(s)
Aging , Blood Platelets , Cell Differentiation , Hematopoietic Stem Cells , Thrombosis , Animals , Hematopoietic Stem Cells/metabolism , Blood Platelets/metabolism , Thrombosis/pathology , Thrombosis/metabolism , Mice , Humans , Megakaryocytes/metabolism , Mice, Inbred C57BL , Megakaryocyte Progenitor Cells/metabolism , Male
2.
Stem Cells ; 41(5): 520-539, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36945732

ABSTRACT

Epigenetic mechanisms regulate the multilineage differentiation capacity of hematopoietic stem cells (HSCs) into a variety of blood and immune cells. Mapping the chromatin dynamics of functionally defined cell populations will shed mechanistic insight into 2 major, unanswered questions in stem cell biology: how does epigenetic identity contribute to a cell type's lineage potential, and how do cascades of chromatin remodeling dictate ensuing fate decisions? Our recent work revealed evidence of multilineage gene priming in HSCs, where open cis-regulatory elements (CREs) exclusively shared between HSCs and unipotent lineage cells were enriched for DNA binding motifs of known lineage-specific transcription factors. Oligopotent progenitor populations operating between the HSCs and unipotent cells play essential roles in effecting hematopoietic homeostasis. To test the hypothesis that selective HSC-primed lineage-specific CREs remain accessible throughout differentiation, we used ATAC-seq to map the temporal dynamics of chromatin remodeling during progenitor differentiation. We observed epigenetic-driven clustering of oligopotent and unipotent progenitors into distinct erythromyeloid and lymphoid branches, with multipotent HSCs and MPPs associating with the erythromyeloid lineage. We mapped the dynamics of lineage-primed CREs throughout hematopoiesis and identified both unique and shared CREs as potential lineage reinforcement mechanisms at fate branch points. Additionally, quantification of genome-wide peak count and size revealed overall greater chromatin accessibility in HSCs, allowing us to identify HSC-unique peaks as putative regulators of self-renewal and multilineage potential. Finally, CRISPRi-mediated targeting of ATACseq-identified putative CREs in HSCs allowed us to demonstrate the functional role of selective CREs in lineage-specific gene expression. These findings provide insight into the regulation of stem cell multipotency and lineage commitment throughout hematopoiesis and serve as a resource to test functional drivers of hematopoietic lineage fate.


Subject(s)
Chromatin , Hematopoiesis , Chromatin/genetics , Chromatin/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics
3.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35072209

ABSTRACT

Tissue-resident lymphoid cells (TLCs) span the spectrum of innate-to-adaptive immune function. Unlike traditional, circulating lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to further understand murine TLC development and the roles of Flk2 and IL7Rα, two cytokine receptors with known function in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled. Despite high labeling, loss of Flk2 minimally affected the generation of these cells. In contrast, loss of IL7Rα, or combined deletion of Flk2 and IL7Rα, dramatically reduced the number of B1a cells, MZBs, ILC2s and Tregs, both in situ and upon transplantation, indicating an intrinsic and essential role for IL7Rα. Surprisingly, reciprocal transplants of wild-type HSCs showed that an IL7Rα-/- environment selectively impaired reconstitution of TLCs when compared with TLC numbers in situ. Taken together, our data defined Flk2- and IL7Rα-positive TLC differentiation paths, and revealed functional roles of Flk2 and IL7Rα in TLC establishment.


Subject(s)
Hematopoietic Stem Cells/immunology , Lymphopoiesis/genetics , Receptors, Interleukin-7/genetics , fms-Like Tyrosine Kinase 3/genetics , Adaptive Immunity/genetics , Animals , B-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Gene Expression Regulation, Developmental/genetics , Hematopoietic Stem Cells/cytology , Immunity, Innate/genetics , Lymphocytes/cytology , Lymphocytes/immunology , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphopoiesis/immunology , Mice , Organ Specificity/genetics , T-Lymphocytes, Regulatory/immunology
4.
Stem Cell Reports ; 16(6): 1598-1613, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34019813

ABSTRACT

Age-related morbidity is associated with a decline in hematopoietic stem cell (HSC) function, but the mechanisms of HSC aging remain unclear. We performed heterochronic HSC transplants followed by quantitative analysis of cell reconstitution. Although young HSCs outperformed old HSCs in young recipients, young HSCs unexpectedly failed to outcompete the old HSCs of aged recipients. Interestingly, despite substantial enrichment of megakaryocyte progenitors (MkPs) in old mice in situ and reported platelet (Plt) priming with age, transplanted old HSCs were deficient in reconstitution of all lineages, including MkPs and Plts. We therefore performed functional analysis of young and old MkPs. Surprisingly, old MkPs displayed unmistakably greater regenerative capacity compared with young MkPs. Transcriptome analysis revealed putative molecular regulators of old MkP expansion. Collectively, these data demonstrated that aging affects HSCs and megakaryopoiesis in fundamentally different ways: whereas old HSCs functionally decline, MkPs gain expansion capacity upon aging.


Subject(s)
Aging/physiology , Hematopoietic Stem Cells/physiology , Megakaryocyte Progenitor Cells/physiology , Thrombopoiesis , Transcriptome , Animals , Cell Lineage , Female , Hematopoietic Stem Cell Transplantation/methods , Male , Mice , Mice, Inbred C57BL
5.
Article in English | MEDLINE | ID: mdl-35037001

ABSTRACT

Platelets provide life-saving functions by halting external and internal bleeding. There is also a dark side to platelet biology, however. Recent reports provide evidence for increased platelet reactivity during aging of mice and humans, making platelets main suspects in the most prevalent aging-related human pathologies, including cardiovascular diseases, stroke, and cancer. What drives this platelet hyperreactivity during aging? Here, we discuss how hematopoietic stem cell differentiation pathways into the platelet lineage offer avenues to understand the fundamental differences between young and old platelets. Recent advances begin to unravel how the cellular and molecular regulation of the parent hematopoietic stem and progenitor cells likely imbue aging characteristics on the resulting Plt progeny. The resulting mechanistic insights into intrinsic platelet reactivity will provide strategies for selectively targeting age-related pathways. This brief viewpoint focuses on current concepts on aging hematopoiesis and the implications for platelet hyperactivity during aging.

SELECTION OF CITATIONS
SEARCH DETAIL
...