Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Redox Biol ; 60: 102629, 2023 04.
Article En | MEDLINE | ID: mdl-36780769

Hydrogen sulfide (H2S) was previously revealed to inhibit osteoblastic differentiation of valvular interstitial cells (VICs), a pathological feature in calcific aortic valve disease (CAVD). This study aimed to explore the metabolic control of H2S levels in human aortic valves. Lower levels of bioavailable H2S and higher levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) were detected in aortic valves of CAVD patients compared to healthy individuals, accompanied by higher expression of cystathionine γ-lyase (CSE) and same expression of cystathionine ß-synthase (CBS). Increased biogenesis of H2S by CSE was found in the aortic valves of CAVD patients which is supported by increased production of lanthionine. In accordance, healthy human aortic VICs mimic human pathology under calcifying conditions, as elevated CSE expression is associated with low levels of H2S. The expression of mitochondrial enzymes involved in H2S catabolism including sulfide quinone oxidoreductase (SQR), the key enzyme in mitochondrial H2S oxidation, persulfide dioxygenase (ETHE1), sulfite oxidase (SO) and thiosulfate sulfurtransferase (TST) were up-regulated in calcific aortic valve tissues, and a similar expression pattern was observed in response to high phosphate levels in VICs. AP39, a mitochondria-targeting H2S donor, rescued VICs from an osteoblastic phenotype switch and reduced the expression of IL-1ß and TNF-α in VICs. Both pro-inflammatory cytokines aggravated calcification and osteoblastic differentiation of VICs derived from the calcific aortic valves. In contrast, IL-1ß and TNF-α provided an early and transient inhibition of VICs calcification and osteoblastic differentiation in healthy cells and that effect was lost as H2S levels decreased. The benefit was mediated via CSE induction and H2S generation. We conclude that decreased levels of bioavailable H2S in human calcific aortic valves result from an increased H2S metabolism that facilitates the development of CAVD. CSE/H2S represent a pathway that reverses the action of calcifying stimuli.


Aortic Valve Stenosis , Calcinosis , Hydrogen Sulfide , Humans , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Hydrogen Sulfide/metabolism , Calcinosis/metabolism , Calcinosis/pathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Cells, Cultured , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism
2.
Redox Biol ; 57: 102504, 2022 Nov.
Article En | MEDLINE | ID: mdl-36240620

Vulnerable atherosclerotic plaques with hemorrhage considerably contribute to cardiovascular morbidity and mortality. Calcification is the main characteristic of advanced atherosclerotic lesions and calcified aortic valve disease (CAVD). Lyses of red blood cells and hemoglobin (Hb) release occur in human hemorrhagic complicated lesions. During the interaction of cell-free Hb with plaque constituents, Hb is oxidized to ferric and ferryl states accompanied by oxidative changes of the globin moieties and heme release. Accumulation of both ferryl-Hb and metHb has been observed in atherosclerotic plaques. The oxidation hotspots in the globin chain are the cysteine and tyrosine amino acids associated with the generation of Hb dimers, tetramers and polymers. Moreover, fragmentation of Hb occurs leading to the formation of globin-derived peptides. A series of these pro-atherogenic cellular responses can be suppressed by hydrogen sulfide (H2S). Since H2S has been explored to exhibit a wide range of physiologic functions to maintain vascular homeostasis, it is not surprising that H2S may play beneficial effects in the progression of atherosclerosis. In the present review, we summarize the findings about the effects of H2S on atherosclerosis and CAVD with a special emphasis on the oxidation of Hb/heme in atherosclerotic plaque development and vascular calcification.

3.
Antioxid Redox Signal ; 35(12): 917-950, 2021 10 20.
Article En | MEDLINE | ID: mdl-34269613

Aim: The aim of our study was to explore the pathophysiologic role of oxidation of hemoglobin (Hb) to ferrylHb in human atherosclerosis. Results: We observed a severe oxidation of Hb to ferrylHb in complicated atherosclerotic lesions of carotid arteries with oxidative changes of the globin moieties, detected previously described oxidation hotspots in Hb (ß1Cys93; ß1Cys112; ß2Cys112) and identified a novel oxidation hotspot (α1Cys104). After producing a monoclonal anti-ferrylHb antibody, ferrylHb was revealed to be localized extracellularly and also internalized by macrophages in the human hemorrhagic complicated lesions. We demonstrated that ferrylHb is taken up via phagocytosis as well as CD163 receptor-mediated endocytosis and then transported to lysosomes involving actin polymerization. Internalization of ferrylHb was accompanied by upregulation of heme oxygenase-1 and H-ferritin and accumulation of iron within lysosomes as a result of heme/iron uptake. Importantly, macrophages exposed to ferrylHb in atherosclerotic plaques exhibited a proinflammatory phenotype, as reflected by elevated levels of IL-1ß and TNF-α. To find further signatures of ferrylHb in complicated lesions, we performed RNA-seq analysis on biopsies from patients who underwent endarterectomies. RNA-seq analysis demonstrated that human complicated lesions had a unique transcriptomic profile different from arteries and atheromatous plaques. Pathways affected in complicated lesions included gene changes associated with phosphoinositide 3-kinase (PI3K) signaling, lipid transport, tissue remodeling, and vascularization. Targeted analysis of gene expression associated with calcification, apoptosis, and hemolytic-specific clusters indicated an increase in the severity of complicated lesions compared with atheroma. A 39% overlap in the differential gene expression profiles of human macrophages exposed to ferrylHb and the complicated lesion profiles was uncovered. Among these 547 genes, we found inflammatory, angiogenesis, and iron metabolism gene clusters regulated in macrophages. Innovation and Conclusion: We conclude that oxidation of Hb to ferrylHb contributes to the progression of atherosclerosis via polarizing macrophages into a proatherogenic phenotype. Antioxid. Redox Signal. 35, 917-950.


Atherosclerosis/metabolism , Hemoglobins/metabolism , Macrophages/metabolism , Humans , Oxidation-Reduction , Phosphatidylinositol 3-Kinases/metabolism
4.
Sci Rep ; 11(1): 10435, 2021 05 17.
Article En | MEDLINE | ID: mdl-34001932

Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.


Carotid Stenosis/complications , Heme Oxygenase-1/metabolism , Heme/metabolism , Hemorrhage/pathology , Plaque, Atherosclerotic/complications , Biopsy , Carotid Stenosis/blood , Cell Line , Endoplasmic Reticulum Stress , Endothelial Cells/pathology , Endothelium, Vascular/cytology , Endothelium, Vascular/pathology , Gene Knockdown Techniques , Healthy Volunteers , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/genetics , Hemolysis , Hemorrhage/etiology , Humans , Plaque, Atherosclerotic/blood
5.
Cells ; 10(3)2021 03 15.
Article En | MEDLINE | ID: mdl-33804125

Heme oxygenase-1 (HO-1) plays a vital role in the catabolism of heme and yields equimolar amounts of biliverdin, carbon monoxide, and free iron. We report that macrophages engulfing either the low amount of heme-containing apoptotic thymocytes or the high amount of heme-containing eryptotic red blood cells (eRBCs) strongly upregulate HO-1. The induction by apoptotic thymocytes is dependent on soluble signals, which do not include adenylate cyclase activators but induce the p38 mitogen-activated protein (MAP) kinase pathway, while in the case of eRBCs, it is cell uptake-dependent. Both pathways might involve the regulation of BTB and CNC homology 1 (BACH1), which is the repressor transcription regulator factor of the HO-1 gene. Long-term continuous efferocytosis of apoptotic thymocytes is not affected by the loss of HO-1, but that of eRBCs is inhibited. This latter is related to an internal signaling pathway that prevents the efferocytosis-induced increase in Rac1 activity. While the uptake of apoptotic cells suppressed the basal pro-inflammatory cytokine production in wild-type macrophages, in the absence of HO-1, engulfing macrophages produced enhanced amounts of pro-inflammatory cytokines. Our data demonstrate that HO-1 is required for both the engulfment and the anti-inflammatory response parts of the efferocytosis program.


Anti-Inflammatory Agents/pharmacology , Heme Oxygenase-1/drug effects , Heme Oxygenase-1/metabolism , Inflammation/drug therapy , Macrophages/drug effects , Animals , Gene Expression Regulation/drug effects , Inflammation/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Phagocytosis/drug effects , Signal Transduction/drug effects , Up-Regulation/drug effects
6.
J Adv Res ; 27: 165-176, 2021 Jan.
Article En | MEDLINE | ID: mdl-33318875

INTRODUCTION: Hydrogen sulfide (H2S) was revealed to inhibit aortic valve calcification and inflammation was implicated in the pathogenesis of calcific aortic valve disease (CAVD). OBJECTIVES: We investigate whether H2S inhibits mineralization via abolishing inflammation. METHODS AND RESULTS: Expression of pro-inflammatory cytokines, interleukin-1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were increased in patients with CAVD and in calcified aortic valve of ApoE-/- mice. Administration of H2 2S releasing donor (4-methoxyphenyl piperidinylphosphinodithioc acid (AP72)) exhibited inhibition on both calcification and inflammation in aortic valve of apolipoprotein E knockout mice (ApoE-/-) mice is reflected by lowering IL-1ß and TNF-α levels. Accordingly, AP72 prevented the accumulation of extracellular calcium deposition and decreased nuclear translocation of nuclear factor-κB (NF-κB) in human valvular interstitial cells (VIC). This was also accompanied by reduced cytokine response. Double-silencing of endogenous H2S producing enzymes, Cystathionine gamma-lyase (CSE) and Cystathionine beta-synthase (CBS) in VIC exerted enhanced mineralization and higher levels of IL-1ß and TNF-α. Importantly, silencing NF-κB gene or its pharmacological inhibition prevented nuclear translocation of runt-related transcription factor 2 (Runx2) and subsequently the calcification of human VIC. Increased levels of NF-κB and Runx2 and their nuclear accumulation occurred in ApoE-/- mice with a high-fat diet. Administration of AP72 decreased the expression of NF-κB and prevented its nuclear translocation in VIC of ApoE-/- mice on a high-fat diet, and that was accompanied by a lowered pro-inflammatory cytokine level. Similarly, activation of Runx2 did not occur in VIC of ApoE-/- mice treated with H2S donor. Employing Stimulated Emission Depletion (STED) nanoscopy, a strong colocalization of NF-κB and Runx2 was detected during the progression of valvular calcification. CONCLUSIONS: Hydrogen sulfide inhibits inflammation and calcification of aortic valve. Our study suggests that the regulation of Runx2 by hydrogen sulfide (CSE/CBS) occurs via NF-κB establishing a link between inflammation and mineralization in vascular calcification.

7.
Eur J Ophthalmol ; 31(5): 2528-2534, 2021 Sep.
Article En | MEDLINE | ID: mdl-32993362

PURPOSE: Our aim was to analyse the clinical effect of intravitreal bevacizumab treatment for macular oedema due to central/branch retinal vein occlusion (CRVO/BRVO). The end points were final best-corrected visual acuity (BCVA), BCVA improvement, final central 1-mm macular subfield thickness (CST) and change in CST. METHODS: Our study included 34 CRVO and 25 BRVO patients. Patients received intravitreal bevacizumab (IVB) treatment at our department. Our control group consisted of 50 CRVO and 30 BRVO patients, who had not received this treatment because their disease developed before the anti-VEGF treatment became available. For statistical analysis, two-sample t-test, Pearson's correlation, and ANOVA were used. The level of significance was defined at p < 0.05. RESULTS: With the two-sample t-test we found significant improvement of BCVA in the IVB-treated group (CRVO: 0.171 ± 0.270, p1 = 3.25×10-4; BRVO: 0.215 ± 0.282, p2 = 5.52×10-4). The difference in BCVA improvement was also significant compared to the control group (CRVO: p1 = 3.46×10-4; BRVO: p2 = 0.003). Significant decrease was observed in the CST in the treated group (CRVO: -345.114 ± 280.577, p1 = 6.94×10-9; BRVO: -151.875 ± 174.341, p2 = 1.67×10-4). In case of BRVO patients the final BCVA was significantly better in the treated group (0.617 ± 0.334) compared to the control group (0.406 ± 0.357), p = 0.016. CONCLUSION: IVB treatment results in significantly better final visual acuity and leads to significantly increased BCVA improvement compared to patients with RVO-induced macular oedema receiving no treatment.


Macular Edema , Retinal Vein Occlusion , Angiogenesis Inhibitors/therapeutic use , Bevacizumab/therapeutic use , Humans , Intravitreal Injections , Macular Edema/diagnosis , Macular Edema/drug therapy , Macular Edema/etiology , Retinal Vein Occlusion/complications , Retinal Vein Occlusion/diagnosis , Retinal Vein Occlusion/drug therapy , Tomography, Optical Coherence , Treatment Outcome
8.
Int J Mol Sci ; 21(13)2020 Jul 03.
Article En | MEDLINE | ID: mdl-32635347

Hemoglobin, heme and iron are implicated in the progression of atherosclerosis. Therefore, we investigated whether the hydrophobic fungal iron chelator siderophore, desferricoprogen (DFC) inhibits atherosclerosis. DFC reduced atherosclerotic plaque formation in ApoE-/- mice on an atherogenic diet. It lowered the plasma level of oxidized LDL (oxLDL) and inhibited lipid peroxidation in aortic roots. The elevated collagen/elastin content and enhanced expression of adhesion molecule VCAM-1 were decreased. DFC diminished oxidation of Low-density Lipoprotein (LDL) and plaque lipids catalyzed by heme or hemoglobin. Formation of foam cells, uptake of oxLDL by macrophages, upregulation of CD36 and increased expression of TNF-α were reduced by DFC in macrophages. TNF-triggered endothelial cell activation (vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecules (ICAMs), E-selectin) and increased adhesion of monocytes to endothelium were attenuated. The increased endothelial permeability and intracellular gap formation provoked by TNF-α was also prevented by DFC. DFC acted as a cytoprotectant in endothelial cells and macrophages challenged with a lethal dose of oxLDL and lowered the expression of stress-responsive heme oxygenase-1 as sublethal dose was employed. Saturation of desferrisiderophore with iron led to the loss of the beneficial effects. We demonstrated that DFC accumulated within the atheromas of the aorta in ApoE-/- mice. DFC represents a novel therapeutic approach to control the progression of atherosclerosis.


Diketopiperazines/pharmacology , Hydroxamic Acids/pharmacology , Plaque, Atherosclerotic/prevention & control , Siderophores/pharmacology , Animals , Aorta/diagnostic imaging , Aorta/drug effects , Aorta/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/pathology , Diet, Atherogenic , Diketopiperazines/pharmacokinetics , Disease Models, Animal , Disease Progression , Foam Cells/drug effects , Foam Cells/pathology , Heme/metabolism , Hydroxamic Acids/pharmacokinetics , Lipid Peroxidation/drug effects , Lipoproteins, LDL/metabolism , Macrophage Activation/drug effects , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Neurospora crassa/chemistry , Oxidative Stress/drug effects , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Positron-Emission Tomography , Siderophores/pharmacokinetics
9.
Oxid Med Cell Longev ; 2020: 3721383, 2020.
Article En | MEDLINE | ID: mdl-32184915

Intraplaque hemorrhage frequently occurs in atherosclerotic plaques resulting in cell-free hemoglobin, which is oxidized to ferryl hemoglobin (FHb) in the highly oxidative environment. Osteoclast-like cells (OLCs) derived from macrophages signify a counterbalance mechanism for calcium deposition in atherosclerosis. Our aim was to investigate whether oxidized hemoglobin alters osteoclast formation, thereby affecting calcium removal from mineralized atherosclerotic lesions. RANKL- (receptor activator of nuclear factor kappa-Β ligand-) induced osteoclastogenic differentiation and osteoclast activity of RAW264.7 cells were studied in response to oxidized hemoglobin via assessing bone resorption activity, expression of osteoclast-specific genes, and the activation of signalization pathways. OLCs in diseased human carotid arteries were assessed by immunohistochemistry. FHb, but not ferrohemoglobin, decreased bone resorption activity and inhibited osteoclast-specific gene expression (tartrate-resistant acid phosphatase, calcitonin receptor, and dendritic cell-specific transmembrane protein) induced by RANKL. In addition, FHb inhibited osteoclastogenic signaling pathways downstream of RANK (receptor activator of nuclear factor kappa-Β). It prevented the induction of TRAF6 (tumor necrosis factor (TNF) receptor-associated factor 6) and c-Fos, phosphorylation of p-38 and JNK (c-Jun N-terminal kinase), and nuclear translocation of NFκB (nuclear factor kappa-Β) and NFATc1 (nuclear factor of activated T-cells, cytoplasmic 1). These effects were independent of heme oxygenase-1 demonstrated by knocking down HO-1 gene in RAW264.7 cells and in mice. Importantly, FHb competed with RANK for RANKL binding suggesting possible mechanisms by which FHb impairs osteoclastic differentiation. In diseased human carotid arteries, OLCs were abundantly present in calcified plaques and colocalized with regions of calcium deposition, while the number of these cells were lower in hemorrhagic lesions exhibiting accumulation of FHb despite calcium deposition. We conclude that FHb inhibits RANKL-induced osteoclastic differentiation of macrophages and suggest that accumulation of FHb in a calcified area of atherosclerotic lesion with hemorrhage retards the formation of OLCs potentially impairing calcium resorption.


Cell Differentiation , Hemoglobins/pharmacology , Hemorrhage/pathology , Macrophages/pathology , Osteoclasts/pathology , Plaque, Atherosclerotic/pathology , Animals , Bone Resorption/pathology , Calcinosis , Carotid Arteries/drug effects , Carotid Arteries/pathology , Cell Differentiation/drug effects , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Heme Oxygenase-1/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Oxidation-Reduction/drug effects , Plaque, Atherosclerotic/genetics , Protein Binding/drug effects , RANK Ligand/genetics , RANK Ligand/metabolism , RAW 264.7 Cells , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction/drug effects
10.
Lab Invest ; 100(7): 986-1002, 2020 07.
Article En | MEDLINE | ID: mdl-32054994

The lysis of red blood cells was shown to occur in human ruptured atherosclerotic lesions and intraventricular hemorrhage (IVH) of the brain. Liberated cell-free hemoglobin was found to undergo oxidation in both pathologies. We hypothesize that hemoglobin-derived peptides are generated during hemoglobin oxidation both in complicated atherosclerotic lesions and IVH of the brain, triggering endothelial cell dysfunction. Oxidized hemoglobin and its products were followed with spectrophotometry, LC-MS/MS analysis and detection of the cross-linking of globin chains in complicated atherosclerotic lesions of the human carotid artery and the hemorrhaged cerebrospinal liquid of preterm infants. The vascular pathophysiologic role of oxidized hemoglobin and the resultant peptides was assessed by measuring endothelial integrity, the activation of endothelial cells and the induction of proinflammatory genes. Peptide fragments of hemoglobin (VNVDEVGGEALGRLLVVYPWTQR, LLVVYPWTQR, MFLSFPTTK, VGAHAGEYGAELERMFLSFPTTK, and FLASVSTVLTSKYR) were identified in ruptured atherosclerotic lesions and in IVH of the human brain. Fragments resulting from the oxidation of hemoglobin were accompanied by the accumulation of ferryl hemoglobin. Similar to complicated atherosclerotic lesions of the human carotid artery, a high level of oxidized and cross-linked hemoglobin was observed in the cerebrospinal fluid after IVH. Haptoglobin inhibited hemoglobin fragmentation provoked by peroxide. The resultant peptides failed to bind haptoglobin or albumin. Peptides derived from hemoglobin oxidation and ferryl hemoglobin induced intercellular gap formation, decreased junctional resistance in the endothelium, and enhanced monocyte adhesion to endothelial cells. Enhanced expression of TNF and the activation of NLRP3 and CASP1 followed by the increased generation of IL-1ß and nuclear translocation of the NF-κß transcription factor occurred in response to hemoglobin-derived peptides, and ferryl hemoglobin in endothelium was upregulated in both pathologies. We conclude that the oxidation of hemoglobin in complicated atherosclerotic lesions and intraventricular hemorrhage of the brain generates peptide fragments and ferryl hemoglobin with the potential to trigger endothelial cell dysfunction.


Carotid Artery Diseases/metabolism , Cerebral Intraventricular Hemorrhage/metabolism , Endothelium, Vascular/physiopathology , Hemoglobins , Brain/metabolism , Brain/pathology , Carotid Artery Diseases/pathology , Cells, Cultured , Cerebral Intraventricular Hemorrhage/pathology , Chromatography, Liquid , Hemoglobins/chemistry , Hemoglobins/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Oxidation-Reduction , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Tandem Mass Spectrometry
11.
Br J Pharmacol ; 177(4): 793-809, 2020 02.
Article En | MEDLINE | ID: mdl-31017307

BACKGROUND AND PURPOSE: Calcification of heart valves is a frequent pathological finding in chronic kidney disease and in elderly patients. Hydrogen sulfide (H2 S) may exert anti-calcific actions. Here we investigated H2 S as an inhibitor of valvular calcification and to identify its targets in the pathogenesis. EXPERIMENTAL APPROACH: Effects of H2 S on osteoblastic transdifferentiation of valvular interstitial cells (VIC) isolated from samples of human aortic valves were studied using immunohistochemistry and western blots. We also assessed H2S on valvular calcification in apolipoprotein E-deficient (ApoE-/- ) mice. KEY RESULTS: In human VIC, H2 S from donor compounds (NaSH, Na2 S, GYY4137, AP67, and AP72) inhibited mineralization/osteoblastic transdifferentiation, dose-dependently in response to phosphate. Accumulation of calcium in the extracellular matrix and expression of osteocalcin and alkaline phosphatase was also inhibited. RUNX2 was not translocated to the nucleus and phosphate uptake was decreased. Pyrophosphate generation was increased via up-regulating ENPP2 and ANK1. Lowering endogenous production of H2 S by concomitant silencing of cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS) favoured VIC calcification. analysis of human specimens revealed higher Expression of CSE in aorta stenosis valves with calcification (AS) was higher than in valves of aortic insufficiency (AI). In contrast, tissue H2 S generation was lower in AS valves compared to AI valves. Valvular calcification in ApoE-/- mice on a high-fat diet was inhibited by H2 S. CONCLUSIONS AND IMPLICATIONS: The endogenous CSE-CBS/H2 S system exerts anti-calcification effects in heart valves providing a novel therapeutic approach to prevent hardening of valves. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Aortic Valve Disease , Aortic Valve Stenosis , Calcinosis , Hydrogen Sulfide , Aged , Animals , Aortic Valve , Calcinosis/prevention & control , Cells, Cultured , Humans , Mice
12.
Arterioscler Thromb Vasc Biol ; 39(3): 413-431, 2019 03.
Article En | MEDLINE | ID: mdl-30700131

Objective- Calcific aortic valve disease is a prominent finding in elderly and in patients with chronic kidney disease. We investigated the potential role of iron metabolism in the pathogenesis of calcific aortic valve disease. Approach and Results- Cultured valvular interstitial cells of stenotic aortic valve with calcification from patients undergoing valve replacement exhibited significant susceptibility to mineralization/osteoblastic transdifferentiation in response to phosphate. This process was abrogated by iron via induction of H-ferritin as reflected by lowering ALP and osteocalcin secretion and preventing extracellular calcium deposition. Cellular phosphate uptake and accumulation of lysosomal phosphate were decreased. Accordingly, expression of phosphate transporters Pit1 and Pit2 were repressed. Translocation of ferritin into lysosomes occurred with high phosphate-binding capacity. Importantly, ferritin reduced nuclear accumulation of RUNX2 (Runt-related transcription factor 2), and as a reciprocal effect, it enhanced nuclear localization of transcription factor Sox9 (SRY [sex-determining region Y]-box 9). Pyrophosphate generation was also increased via upregulation of ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase-2). 3H-1, 2-dithiole-3-thione mimicked these beneficial effects in valvular interstitial cell via induction of H-ferritin. Ferroxidase activity of H-ferritin was essential for this function, as ceruloplasmin exhibited similar inhibitory functions. Histological analysis of stenotic aortic valve revealed high expression of H-ferritin without iron accumulation and its relative dominance over ALP in noncalcified regions. Increased expression of H-ferritin accompanied by elevation of TNF-α (tumor necrosis factor-α) and IL-1ß (interleukin-1ß) levels, inducers of H-ferritin, corroborates the essential role of ferritin/ferroxidase via attenuating inflammation in calcific aortic valve disease. Conclusions- Our results indicate that H-ferritin is a stratagem in mitigating valvular mineralization/osteoblastic differentiation. Utilization of 3H-1, 2-dithiole-3-thione to induce ferritin expression may prove a novel therapeutic potential in valvular mineralization.


Aortic Valve Stenosis/metabolism , Apoferritins/physiology , Vascular Calcification/metabolism , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/pathology , Apoferritins/antagonists & inhibitors , Apoferritins/pharmacology , Biological Transport , Cell Nucleus/metabolism , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/biosynthesis , Core Binding Factor Alpha 1 Subunit/genetics , Endothelial Cells/metabolism , Gene Expression Regulation , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Ion Channels/biosynthesis , Iron/pharmacology , Lysosomes/metabolism , Phosphates/metabolism , Phosphoric Diester Hydrolases/biosynthesis , Phosphoric Diester Hydrolases/genetics , SOX9 Transcription Factor/metabolism , Thiones/pharmacology , Thiophenes/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Vascular Calcification/pathology
13.
Front Physiol ; 9: 1595, 2018.
Article En | MEDLINE | ID: mdl-30515102

Accumulation of damaged or misfolded proteins resulted from oxidative protein modification induces endoplasmic reticulum (ER) stress by activating the pathways of unfolded protein response. In pathologic hemolytic conditions, extracellular free hemoglobin is submitted to rapid oxidation causing heme release. Resident cells of atherosclerotic lesions, after intraplaque hemorrhage, are exposed to heme leading to oxidative injury. Therefore, we raised the question whether heme can also provoke ER stress. Smooth muscle cells are one of the key players of atherogenesis; thus, human aortic smooth muscle cells (HAoSMCs) were selected as a model cell to reveal the possible link between heme and ER stress. Using immunoblotting, quantitative polymerase chain reaction and immunocytochemistry, we quantitated the markers of ER stress. These were: phosphorylated eIF2α, Activating transcription factor-4 (ATF4), DNA-damage-inducible transcript 3 (also known as C/EBP homology protein, termed CHOP), X-box binding protein-1 (XBP1), Activating transcription factor-6 (ATF6), GRP78 (glucose-regulated protein, 78kDa) and heme responsive genes heme oxygenase-1 and ferritin. In addition, immunohistochemistry was performed on human carotid artery specimens from patients who had undergone carotid endarterectomy. We demonstrate that heme increases the phosphorylation of eiF2α in HAoSMCs and the expression of ATF4. Heme also enhances the splicing of XBP1 and the proteolytic cleavage of ATF6. Consequently, there is up-regulation of target genes increasing both mRNA and protein levels of CHOP and GRP78. However, TGFß and collagen type I decreased. When the heme binding proteins, alpha-1-microglobulin (A1M) and hemopexin (Hpx) are present in cell media, the ER stress provoked by heme is inhibited. ER stress pathways are also retarded by the antioxidant N-acetyl cysteine (NAC) indicating that reactive oxygen species are involved in heme-induced ER stress. Consistent with these findings, elevated expression of the ER stress marker GRP78 and CHOP were observed in smooth muscle cells of complicated lesions with hemorrhage compared to either atheromas or healthy arteries. In conclusion, heme triggers ER stress in a time- and dose-dependent manner in HAoSMCs. A1M and Hpx as well as NAC effectively hamper heme-induced ER stress, supporting their use as a potential therapeutic approach to reverse such a deleterious effects of heme toxicity.

14.
Oxid Med Cell Longev ; 2018: 3812568, 2018.
Article En | MEDLINE | ID: mdl-29560080

The infiltration of red blood cells into atheromatous plaques is implicated in atherogenesis. Inside the lesion, hemoglobin (Hb) is oxidized to ferri- and ferrylHb which exhibit prooxidant and proinflammatory activities. Cystathione gamma-lyase- (CSE-) derived H2S has been suggested to possess various antiatherogenic actions. Expression of CSE was upregulated predominantly in macrophages, foam cells, and myofibroblasts of human atherosclerotic lesions derived from carotid artery specimens of patients. A similar pattern was observed in aortic lesions of apolipoprotein E-deficient mice on high-fat diet. We identified several triggers for inducing CSE expression in macrophages and vascular smooth muscle cells including heme, ferrylHb, plaque lipids, oxidized low-density lipoprotein, tumor necrosis factor-α, and interleukin-1ß. In the interplay between hemoglobin and atheroma lipids, H2S significantly mitigated oxidation of Hb preventing the formation of ferrylHb derivatives, therefore providing a novel function as a heme-redox-intermediate-scavenging antioxidant. By inhibiting Hb-lipid interactions, sulfide lowered oxidized Hb-mediated induction of adhesion molecules in endothelium and disruption of endothelial integrity. Exogenous H2S inhibited heme and Hb-mediated lipid oxidation of human atheroma-derived lipid and human complicated lesion. Our study suggests that the CSE/H2S system represents an atheroprotective pathway for removing or limiting the formation of oxidized Hb and lipid derivatives in the atherosclerotic plaque.


Atherosclerosis/blood , Atherosclerosis/drug therapy , Hemoglobins/metabolism , Hydrogen Sulfide/pharmacology , Lipids/blood , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/drug therapy , Animals , Atherosclerosis/pathology , Cells, Cultured , Endothelial Cells , Humans , Hydrogen Sulfide/chemistry , Mice , Mice, Inbred C57BL , Morpholines/chemistry , Morpholines/pharmacology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Organothiophosphorus Compounds/chemistry , Organothiophosphorus Compounds/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Plaque, Atherosclerotic/pathology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology
15.
Oxid Med Cell Longev ; 2013: 676425, 2013.
Article En | MEDLINE | ID: mdl-23766856

Oxidized cell-free hemoglobin (Hb), including covalently cross-linked Hb multimers, is present in advanced atherosclerotic lesions. Oxidation of Hb produces methemoglobin (Fe(3+)) and ferryl hemoglobin (Fe(4+) = O(2-)). Ferryl iron is unstable and can return to the Fe(3+) state by reacting with specific amino acids of the globin chains. In these reactions globin radicals are produced followed by termination reactions yielding covalently cross-linked Hb multimers. Despite the evanescent nature of the ferryl state, herein we refer to this oxidized Hb as "ferryl Hb." Our aim in this work was to study formation and biological effects of ferrylHb. We demonstrate that ferrylHb, like metHb, can release its heme group, leading to sensitization of endothelial cells (ECs) to oxidant-mediated killing and to oxidation of low-density lipoprotein (LDL). Furthermore, we observed that both oxidized LDL and lipids derived from human atherosclerotic lesions trigger Hb oxidation and subsequent production of covalently cross-linked ferrylHb multimers. Previously we showed that ferrylHb disrupts EC monolayer integrity and induces expression of inflammatory cell adhesion molecules. Here we show that when exposed to ferrylHb, EC monolayers exhibit increased permeability and enhanced monocyte adhesion. Taken together, interactions between cell-free Hb and atheroma lipids engage in a vicious cycle, amplifying oxidation of plaque lipids and Hb. These processes trigger EC activation and cytotoxicity.


Atherosclerosis/metabolism , Atherosclerosis/pathology , Hemoglobins/metabolism , Inflammation Mediators/metabolism , Oxidants/metabolism , Cell Adhesion/drug effects , Cell Membrane Permeability/drug effects , Cross-Linking Reagents/metabolism , Ferritins/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Haptoglobins/metabolism , Heme Oxygenase-1/metabolism , Hemoglobins/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hydrogen Peroxide/metabolism , Lipoproteins, LDL , Monocytes/drug effects , Monocytes/metabolism , Monocytes/pathology , Oxidation-Reduction
...