Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 200(10): 890-900, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38847419

ABSTRACT

The metrological quality of a measurement is characterised by evaluating the uncertainty in the measurement. In this paper, uncertainty in personal dose measured using individual monitoring CaSO4:Dy-based thermoluminescence dosimeter badge is evaluated by application of the guide to the expression of uncertainty in measurement method. The present dose reporting quantity, whole body dose (WBD) and the proposed quantity, personal dose equivalent, Hp(10) has been used as measurands. The influence of various input quantities on the measurement were analyzed through tests that conform to the requirements of the International Electrotechnical Commission IEC 62387. The study found that the expanded uncertainties for WBD and Hp(10) measurements were 63.4% and 41.4%, respectively, corresponding to a 95% coverage probability for workplace fields covering a wide photon energy range (33-1250 keV). However, the uncertainty estimates were quite lower for the type of workplaces that are identified using the dose evaluation algorithm. The input quantities, namely, the response to a mixture of photon beam qualities and photon energy and angular dependence contribute the most to the total uncertainty.


Subject(s)
Occupational Exposure , Radiation Dosage , Thermoluminescent Dosimetry , Workplace , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/methods , Humans , Occupational Exposure/analysis , Uncertainty , Radiation Monitoring/methods , Algorithms , Dysprosium/chemistry , Photons , Radiation Protection/methods , Radiation Protection/standards , Radiation Dosimeters
SELECTION OF CITATIONS
SEARCH DETAIL
...